Pairwise tests of independence for nominal data with matrix output
Conducts pairwise tests for a 2-dimensional matrix, in which at at least one dimension has more than two levels, as a post-hoc test. Conducts Fisher exact, Chi-square, or G-test.
pairwiseNominalMatrix( x, compare = "row", fisher = TRUE, gtest = FALSE, chisq = FALSE, method = "fdr", correct = "none", digits = 3, ... )
x
: A two-way contingency table. At least one dimension should have more than two levels.compare
: If "row"
, treats the rows as the grouping variable. If "column"
, treats the columns as the grouping variable.fisher
: If "TRUE"
, conducts fisher exact test.gtest
: If "TRUE"
, conducts G-test.chisq
: If "TRUE"
, conducts Chi-square test of association.method
: The method to adjust multiple p-values. See p.adjust
.correct
: The correction method to pass to DescTools::GTest
.digits
: The number of significant digits in the output....
: Additional arguments, passed to stats::fisher.test
, DescTools::GTest
, or stats::chisq.test
.A list consisting of: the test used, a matrix of unadjusted p-values, the p-value adjustment method used, and a matrix of adjusted p-values.
### Independence test for a 4 x 2 matrix data(Anderson) fisher.test(Anderson) Anderson = Anderson[(c("Heimlich", "Bloom", "Dougal", "Cobblestone")),] PT = pairwiseNominalMatrix(Anderson, fisher = TRUE, gtest = FALSE, chisq = FALSE)$Adjusted PT library(multcompView) multcompLetters(PT)
https://rcompanion.org/handbook/H_04.html
pairwiseMcnemar
, groupwiseCMH
, nominalSymmetryTest
, pairwiseNominalIndependence
Salvatore Mangiafico, mangiafico@njaes.rutgers.edu