Useful summaries of partition models from rpart
Reports the RMSE, AIC, and variable importances for a partition model or the variable importances from a random forest.
summarize_tree(TREE)
TREE
: A partition model created with rpart
or a random forest from randomForest
Extracts the RMSE and AIC of a partition model and the variable importances of partition models or random forests.
Introduction to Regression and Modeling
Adam Petrie
rpart
, randomForest
data(WINE) TREE <- rpart(Quality~.,data=WINE,control=rpart.control(cp=0.01,xval=10,minbucket=5)) summarize_tree(TREE) RF <- randomForest(Quality~.,data=WINE,ntree=50) summarize_tree(RF) data(NFL) TREE <- rpart(X4.Wins~.,data=NFL,control=rpart.control(cp=0.002,xval=10,minbucket=5)) summarize_tree(TREE) RF <- randomForest(X4.Wins~.,data=NFL,ntree=50) summarize_tree(RF)
Useful links