calculateNullESAccuracy function

calculateNullESAccuracy

calculateNullESAccuracy

The function uses simulation to assess the accuracy when the mean difference is zero, and the type 1 error rates of parametric and non-parametric effect sizes for both two group randomized designs and four group randomized block designs, for each of four different distributions.

calculateNullESAccuracy( mean = 0, sd = 1, N = 10, reps = 10, type = "n", seed = 123, StdAdj = 0, Blockmean = 0.5 )

Arguments

  • mean: The mean of the baseline distribution.
  • sd: The standard deviation or shape of the baseline distribution
  • N: The number of observations per group for two group experiments and N/2 the sample sizes for four group experiments. N must be even to ensure equal N/2 defines appropriate sample sizes per group for 4 group experiments
  • reps: The number of replications (i.e. two-group and four group experiments) to be simulated
  • type: A string parameter defining the distribution being simulated i.e. 'n' for normal data, 'l' for log-normal data, 'g' for gamma data and 'lap' for LaPlace data.
  • seed: A starting value for the simulations
  • StdAdj: A numerical parameter that can be used to add additional variance for normal, lognormal and Laplce data and to change the shape parameter for gamma data.
  • Blockmean: A numerical parameter used to introduce a fixed Block effect for four group experiments

Returns

A tibble identifying the median absolute error for the effect sizes Cliff's d, phat and StdMD and the Type 1 error rate, estimated from the proportion of significant effect sizes in the simulated experiments.

Examples

as.data.frame( calculateNullESAccuracy( mean=0,sd=1,N=10,reps=30,type='n',seed=123,StdAdj = 0,Blockmean = 0.5)) # Design Obs CliffdAbsError PHatAbsError StdESdAbsError varCliffd varPHat # 1 2G_n 20 0.20 0.10 0.2624447 0.05530851 0.01382713 # 2 4G_n 20 0.16 0.08 0.1848894 0.05447540 0.01361885 # varStdES ObsCliffd ObsPHat ObsStdES CliffdType1ER PHatType1ER # 1 0.1425374 0.021333333 0.5106667 0.0001190251 0 0 # 2 0.1484728 -0.009333333 0.4953333 0.0295002335 0 0 # StdESType1ER # 1 0.03333333 # 2 0.03333333 #as.data.frame( ( # mean=0,sd=1,N=10,reps=100,type='n',seed=123,StdAdj = 0,Blockmean = 0.5)) # Design Obs CliffdAbsError PHatAbsError StdESdAbsError varCliffd varPHat varStdES ObsCliffd #1 2G_n 20 0.21 0.105 0.3303331 0.08064949 0.02016237 0.2488365 -0.0010 #2 4G_n 20 0.16 0.080 0.2565372 0.05933430 0.01483358 0.1769521 0.0052 # ObsPHat ObsStdES CliffdType1ER PHatType1ER StdESType1ER #1 0.4995 -0.02395895 0.07 0.08 0.08 #2 0.5026 0.03769940 0.01 0.01 0.02

Author(s)

Barbara Kitchenham and Lech Madeyski