dist_bdegp function

Construct a BDEGP-Family

Construct a BDEGP-Family

Constructs a BDEGP-Family distribution with fixed number of components and blending interval.

dist_bdegp(n, m, u, epsilon)

Arguments

  • n: Number of dirac components, starting with a point mass at 0.
  • m: Number of erlang components, translated by n - 0.5.
  • u: Blending cut-off, must be a positive real.
  • epsilon: Blending radius, must be a positive real less than u. The blending interval will be u - epsilon < x < u + epsilon.

Returns

  • A MixtureDistribution of

    • n DiracDistributions at 0 .. n - 1 and

    • a BlendedDistribution object with child Distributions

      • a TranslatedDistribution with offset n - 0.5 of an ErlangMixtureDistribution with m shapes

      • and a GeneralizedParetoDistribution with shape parameter restricted to [0, 1] and location parameter fixed at u

        With break u and bandwidth epsilon.

Examples

dist <- dist_bdegp(n = 1, m = 2, u = 10, epsilon = 3) params <- list( dists = list( list(), list( dists = list( list( dist = list( shapes = list(1L, 2L), scale = 1.0, probs = list(0.7, 0.3) ) ), list( sigmau = 1.0, xi = 0.1 ) ), probs = list(0.1, 0.9) ) ), probs = list(0.95, 0.05) ) x <- dist$sample(100, with_params = params) plot_distributions( theoretical = dist, empirical = dist_empirical(x), .x = seq(0, 20, length.out = 101), with_params = list(theoretical = params) )

See Also

Other Distributions: Distribution, dist_beta(), dist_binomial(), dist_blended(), dist_dirac(), dist_discrete(), dist_empirical(), dist_erlangmix(), dist_exponential(), dist_gamma(), dist_genpareto(), dist_lognormal(), dist_mixture(), dist_negbinomial(), dist_normal(), dist_pareto(), dist_poisson(), dist_translate(), dist_trunc(), dist_uniform(), dist_weibull()