Construct a BDEGP-Family
Constructs a BDEGP-Family distribution with fixed number of components and blending interval.
dist_bdegp(n, m, u, epsilon)
n
: Number of dirac components, starting with a point mass at 0.m
: Number of erlang components, translated by n - 0.5
.u
: Blending cut-off, must be a positive real.epsilon
: Blending radius, must be a positive real less than u
. The blending interval will be u - epsilon < x < u + epsilon
.A MixtureDistribution
of
n
DiracDistribution
s at 0 .. n - 1 and
a BlendedDistribution
object with child Distributions
a TranslatedDistribution
with offset n - 0.5
of an ErlangMixtureDistribution
with m
shapes
and a GeneralizedParetoDistribution
with shape parameter restricted to [0, 1] and location parameter fixed at u
With break u
and bandwidth epsilon
.
dist <- dist_bdegp(n = 1, m = 2, u = 10, epsilon = 3) params <- list( dists = list( list(), list( dists = list( list( dist = list( shapes = list(1L, 2L), scale = 1.0, probs = list(0.7, 0.3) ) ), list( sigmau = 1.0, xi = 0.1 ) ), probs = list(0.1, 0.9) ) ), probs = list(0.95, 0.05) ) x <- dist$sample(100, with_params = params) plot_distributions( theoretical = dist, empirical = dist_empirical(x), .x = seq(0, 20, length.out = 101), with_params = list(theoretical = params) )
Other Distributions: Distribution
, dist_beta()
, dist_binomial()
, dist_blended()
, dist_dirac()
, dist_discrete()
, dist_empirical()
, dist_erlangmix()
, dist_exponential()
, dist_gamma()
, dist_genpareto()
, dist_lognormal()
, dist_mixture()
, dist_negbinomial()
, dist_normal()
, dist_pareto()
, dist_poisson()
, dist_translate()
, dist_trunc()
, dist_uniform()
, dist_weibull()
Useful links