Predict individual distribution parameters
## S3 method for class 'reservr_keras_model' predict(object, data, as_matrix = FALSE, ...)
object
: A compiled and trained reservr_keras_model
.data
: Input data compatible with the model.as_matrix
: Return a parameter matrix instead of a list structure?...
: ignoredA parameter list suitable for the with_params
argument of the distribution family used for the model. Contains one set of parameters per row in data
.
if (interactive()) { dist <- dist_exponential() params <- list(rate = 1.0) N <- 100L rand_input <- runif(N) x <- dist$sample(N, with_params = params) tf_in <- keras3::layer_input(1L) mod <- tf_compile_model( inputs = list(tf_in), intermediate_output = tf_in, dist = dist, optimizer = keras3::optimizer_adam(), censoring = FALSE, truncation = FALSE ) tf_fit <- fit( object = mod, x = k_matrix(rand_input), y = x, epochs = 10L, callbacks = list( callback_debug_dist_gradients(mod, k_matrix(rand_input), x) ) ) tf_preds <- predict(mod, data = k_matrix(rand_input)) }
Useful links