Initialise model weights to a global parameter fit
Initialises a compiled reservr_keras_model
weights such that the predictions are equal to, or close to, the distribution parameters given by params
.
tf_initialise_model( model, params, mode = c("scale", "perturb", "zero", "none") )
model
: A reservr_compiled_model
obtained by tf_compile_model()
.
params
: A list of distribution parameters compatible with model
.
mode
: An initialisation mode
params
and the kernels uniform on [-0.1, 0.1] * bias scale.params
and leave the kernels as is.params
and set the kernel to zero.Invisibly model
with changed weights
dist <- dist_exponential() group <- sample(c(0, 1), size = 100, replace = TRUE) x <- dist$sample(100, with_params = list(rate = group + 1)) global_fit <- fit(dist, x) if (interactive()) { library(keras3) l_in <- layer_input(shape = 1L) mod <- tf_compile_model( inputs = list(l_in), intermediate_output = l_in, dist = dist, optimizer = optimizer_adam(), censoring = FALSE, truncation = FALSE ) tf_initialise_model(mod, global_fit$params) fit_history <- fit( mod, x = group, y = x, epochs = 200L ) predicted_means <- predict(mod, data = as_tensor(c(0, 1), config_floatx())) }
Useful links