Riemannian Metrics for Symmetric Positive Definite Matrices
Compute the AIRM Vectorization of Tangent Space
Compute the Bures-Wasserstein Exponential
Compute the Bures-Wasserstein Logarithm
Compute the Bures-Wasserstein Inverse Vectorization
Compute the Bures-Wasserstein Vectorization
Compute the Frechet Mean
Configure Progress Handlers
Create ParquetBackend from Directory
Create a Progress Reporter for Iterative Operations
CSample Class
CSuperSample Class
Metric Object Constructor
Pre-configured Riemannian metrics for SPD matrices
Parallel Processing Configuration for riemtan
ParquetBackend Class
Progress Reporting Utilities for riemtan
Relocate Tangent Representations to a New Reference Point
Reset Parallel Plan to Sequential
TangentImageHandler Class
Validate Backend Object
Validate Connections
Validate arguments for Riemannian logarithms
Validate arguments for Riemannian logarithms
Validate Metric
Validate Parquet Directory Structure
Validate Parquet Directory
Validate Tangent Images
Validate arguments for inverse vectorization
Validate arguments for vectorization
Validate Vector Images
Vectorize at Identity Matrix
Execute Function with Progress Reporting for Each Item
Execute Expression with Progress Reporting
Check if Progress Reporting is Available
Compute the AIRM Exponential
Compute the AIRM Logarithm
Compute the Inverse Vectorization (AIRM)
DataBackend Abstract Class
Default reference point
Differential of Matrix Exponential Map
Differential of Matrix Logarithm Map
Compute the Euclidean Exponential
Compute the Euclidean Logarithm
Compute the Inverse Vectorization (Euclidean)
Vectorize at Identity Matrix (Euclidean)
Get Current Number of Parallel Workers
Half-underscore operation for use in the log-Cholesky metric
Create an Identity Matrix
Check if Parallel Processing is Enabled
ListBackend Class
Compute the Log-Cholesky Exponential
Compute the Log-Cholesky Logarithm
Compute the Log-Cholesky Inverse Vectorization
Compute the Log-Cholesky Vectorization
Compute the Log-Euclidean Exponential
Compute the Log-Euclidean Logarithm
Compute the Inverse Vectorization (Euclidean)
Vectorize at Identity Matrix (Euclidean)
riemtan: Riemannian Metrics for Symmetric Positive Definite Matrices
Generate Random Samples from a Riemannian Normal Distribution
Wrapper for the matrix logarithm
Set Parallel Processing Plan
Decide Whether to Use Parallel Processing
Reverse isometry from tangent space at identity to tangent space at P
Isometry from tangent space at P to tangent space at identity
Write Connectomes to Parquet Files
Implements various Riemannian metrics for symmetric positive definite matrices, including AIRM (Affine Invariant Riemannian Metric, <doi:10.1007/s11263-005-3222-z>), Log-Euclidean (<doi:10.1002/mrm.20965>), Euclidean, Log-Cholesky (<doi:10.1137/18M1221084>), and Bures-Wasserstein metrics (<doi:10.1016/j.exmath.2018.01.002>). Provides functions for computing logarithmic and exponential maps, vectorization, and statistical operations on the manifold of positive definite matrices.