riemtan0.2.5 package

Riemannian Metrics for Symmetric Positive Definite Matrices

airm_vec

Compute the AIRM Vectorization of Tangent Space

bures_wasserstein_exp

Compute the Bures-Wasserstein Exponential

bures_wasserstein_log

Compute the Bures-Wasserstein Logarithm

bures_wasserstein_unvec

Compute the Bures-Wasserstein Inverse Vectorization

bures_wasserstein_vec

Compute the Bures-Wasserstein Vectorization

compute_frechet_mean

Compute the Frechet Mean

configure_progress

Configure Progress Handlers

create_parquet_backend

Create ParquetBackend from Directory

create_progressor

Create a Progress Reporter for Iterative Operations

CSample

CSample Class

CSuperSample

CSuperSample Class

metric

Metric Object Constructor

metrics

Pre-configured Riemannian metrics for SPD matrices

parallel_config

Parallel Processing Configuration for riemtan

ParquetBackend

ParquetBackend Class

progress_utils

Progress Reporting Utilities for riemtan

relocate

Relocate Tangent Representations to a New Reference Point

reset_parallel_plan

Reset Parallel Plan to Sequential

TangentImageHandler

TangentImageHandler Class

validate_backend

Validate Backend Object

validate_conns

Validate Connections

validate_exp_args

Validate arguments for Riemannian logarithms

validate_log_args

Validate arguments for Riemannian logarithms

validate_metric

Validate Metric

validate_parquet_dir

Validate Parquet Directory Structure

validate_parquet_directory

Validate Parquet Directory

validate_tan_imgs

Validate Tangent Images

validate_unvec_args

Validate arguments for inverse vectorization

validate_vec_args

Validate arguments for vectorization

validate_vec_imgs

Validate Vector Images

vec_at_id

Vectorize at Identity Matrix

with_progress_signal

Execute Function with Progress Reporting for Each Item

with_progress

Execute Expression with Progress Reporting

is_progress_available

Check if Progress Reporting is Available

airm_exp

Compute the AIRM Exponential

airm_log

Compute the AIRM Logarithm

airm_unvec

Compute the Inverse Vectorization (AIRM)

DataBackend

DataBackend Abstract Class

default_ref_pt

Default reference point

dexp

Differential of Matrix Exponential Map

dlog

Differential of Matrix Logarithm Map

euclidean_exp

Compute the Euclidean Exponential

euclidean_log

Compute the Euclidean Logarithm

euclidean_unvec

Compute the Inverse Vectorization (Euclidean)

euclidean_vec

Vectorize at Identity Matrix (Euclidean)

get_n_workers

Get Current Number of Parallel Workers

half_underscore

Half-underscore operation for use in the log-Cholesky metric

id_matr

Create an Identity Matrix

is_parallel_enabled

Check if Parallel Processing is Enabled

ListBackend

ListBackend Class

log_cholesky_exp

Compute the Log-Cholesky Exponential

log_cholesky_log

Compute the Log-Cholesky Logarithm

log_cholesky_unvec

Compute the Log-Cholesky Inverse Vectorization

log_cholesky_vec

Compute the Log-Cholesky Vectorization

log_euclidean_exp

Compute the Log-Euclidean Exponential

log_euclidean_log

Compute the Log-Euclidean Logarithm

log_euclidean_unvec

Compute the Inverse Vectorization (Euclidean)

log_euclidean_vec

Vectorize at Identity Matrix (Euclidean)

riemtan-package

riemtan: Riemannian Metrics for Symmetric Positive Definite Matrices

rspdnorm

Generate Random Samples from a Riemannian Normal Distribution

safe_logm

Wrapper for the matrix logarithm

set_parallel_plan

Set Parallel Processing Plan

should_parallelize

Decide Whether to Use Parallel Processing

spd_isometry_from_identity

Reverse isometry from tangent space at identity to tangent space at P

spd_isometry_to_identity

Isometry from tangent space at P to tangent space at identity

write_connectomes_to_parquet

Write Connectomes to Parquet Files

Implements various Riemannian metrics for symmetric positive definite matrices, including AIRM (Affine Invariant Riemannian Metric, <doi:10.1007/s11263-005-3222-z>), Log-Euclidean (<doi:10.1002/mrm.20965>), Euclidean, Log-Cholesky (<doi:10.1137/18M1221084>), and Bures-Wasserstein metrics (<doi:10.1016/j.exmath.2018.01.002>). Provides functions for computing logarithmic and exponential maps, vectorization, and statistical operations on the manifold of positive definite matrices.

  • Maintainer: Nicolas Escobar
  • License: MIT + file LICENSE
  • Last published: 2025-11-10