predict_ff_regression function

Prediction for a function-on-function regression model

Prediction for a function-on-function regression model

This function is used to make prediction for a new set of functional predictors based upon a fitted function-on-function regression model in the output of rob.ff.reg.

predict_ff_regression(object, Xnew)

Arguments

  • object: An output object obtained from rob.ff.reg.
  • Xnew: A list of matrices consisting of the new observations of functional predictors. The argument Xnew must have the same length and the same structure as the input X of rob.ff.reg.

Returns

An ntest×pn_{test} \times p-dimensional matrix of predicted functions of the response variable for the given set of new functional predictors Xnew. Here, ntestn_{test}, the number of rows of the matrix of predicted values, equals to the number of rows of Xnew, and pp equals to the number of columns of Y, the input in the rob.ff.reg.

Author(s)

Ufuk Beyaztas and Han Lin Shang

Examples

set.seed(2022) sim.data <- generate.ff.data(n.pred = 5, n.curve = 200, n.gp = 101, out.p = 0.1) out.indx <- sim.data$out.indx Y <- sim.data$Y X <- sim.data$X indx.test <- sample(c(1:200)[-out.indx], 60) indx.train <- c(1:200)[-indx.test] Y.train <- Y[indx.train,] Y.test <- Y[indx.test,] X.train <- X.test <- list() for(i in 1:5){ X.train[[i]] <- X[[i]][indx.train,] X.test[[i]] <- X[[i]][indx.test,] } gpY = seq(0, 1, length.out = 101) # grid points of Y gpX <- rep(list(seq(0, 1, length.out = 101)), 5) # grid points of Xs model.MM <- rob.ff.reg(Y = Y.train, X = X.train, model = "full", emodel = "robust", fmodel = "MM", gpY = gpY, gpX = gpX) pred.MM <- predict_ff_regression(object = model.MM, Xnew = X.test) round(mean((Y.test - pred.MM)^2), 4) # 0.5925 (MM method)
  • Maintainer: Ufuk Beyaztas
  • License: GPL-3
  • Last published: 2024-01-23

Useful links