class_svystat_rob function

Utility Functions for Objects of Class svystat_rob

Utility Functions for Objects of Class svystat_rob

Methods and utility functions for objects of class svystat_rob.

mse(object, ...) ## S3 method for class 'svystat_rob' mse(object, ...) ## S3 method for class 'svystat' mse(object, ...) ## S3 method for class 'svystat_rob' summary(object, digits = max(3L, getOption("digits") - 3L), ...) ## S3 method for class 'svystat_rob' coef(object, ...) ## S3 method for class 'svystat_rob' SE(object, ...) ## S3 method for class 'svystat_rob' vcov(object, ...) ## S3 method for class 'svystat_rob' scale(x, ...) ## S3 method for class 'svystat_rob' residuals(object, ...) ## S3 method for class 'svystat_rob' fitted(object, ...) robweights(object) ## S3 method for class 'svystat_rob' robweights(object) ## S3 method for class 'svystat_rob' print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

  • object: object of class svystat_rob.
  • digits: [integer] minimal number of significant digits.
  • ...: additional arguments passed to the method.
  • x: object of class svystat_rob.

Details

Package survey must be attached to the search path in order to use the functions (see library or require).

Utility functions:

  • mse computes the estimated risk (mean square error) in presence of representative outliers; see also mer
  • summary gives a summary of the estimation properties
  • robweights extracts the robustness weights
  • coef extracts the estimate of location
  • SE extracts the (estimated) standard error
  • vcov extracts the (estimated) covariance matrix
  • residuals extracts the residuals
  • fitted extracts the fitted values

See Also

svymean_dalen, svymean_huber, svymean_ratio, svymean_reg, svymean_tukey, svymean_trimmed, svymean_winsorized

svytotal_dalen, svytotal_huber, svytotal_ratio, svytotal_reg, svytotal_tukey, svytotal_trimmed, svytotal_winsorized

Examples

head(workplace) library(survey) # Survey design for stratified simple random sampling without replacement dn <- if (packageVersion("survey") >= "4.2") { # survey design with pre-calibrated weights svydesign(ids = ~ID, strata = ~strat, fpc = ~fpc, weights = ~weight, data = workplace, calibrate.formula = ~-1 + strat) } else { # legacy mode svydesign(ids = ~ID, strata = ~strat, fpc = ~fpc, weights = ~weight, data = workplace) } # Estimated one-sided k winsorized population total (i.e., k = 2 observations # are winsorized at the top of the distribution) wtot <- svytotal_k_winsorized(~employment, dn, k = 2) # Show summary statistic of the estimated total summary(wtot) # Estimated mean square error (MSE) mse(wtot) # Estimate, std. err., variance, and the residuals coef(wtot) SE(wtot) vcov(wtot) residuals(wtot) # M-estimate of the total (Huber psi-function; tuning constant k = 3) mtot <- svytotal_huber(~employment, dn, k = 45) # Plot of the robustness weights of the M-estimate against its residuals plot(residuals(mtot), robweights(mtot))
  • Maintainer: Tobias Schoch
  • License: GPL (>= 2)
  • Last published: 2024-08-22