weighted_mean_trimmed function

Weighted Trimmed Mean and Total (bare-bone functions)

Weighted Trimmed Mean and Total (bare-bone functions)

Weighted trimmed mean and total (bare-bone functions with limited functionality; see svymean_trimmed and svytotal_trimmed for more capable methods)

weighted_mean_trimmed(x, w, LB = 0.05, UB = 1 - LB, info = FALSE, na.rm = FALSE) weighted_total_trimmed(x, w, LB = 0.05, UB = 1 - LB, info = FALSE, na.rm = FALSE)

Arguments

  • x: [numeric vector] data.
  • w: [numeric vector] weights (same length as x).
  • LB: [double] lower bound of trimming such that 00 \leq LB << UB 1\leq 1.
  • UB: [double] upper bound of trimming such that 00 \leq LB << UB 1\leq 1.
  • info: [logical] indicating whether additional information should be returned (default: FALSE).
  • na.rm: [logical] indicating whether NA values should be removed before the computation proceeds (default: FALSE).

Details

  • Characteristic.: Population mean or total. Let μ\mu denote the estimated trimmed population mean; then, the estimated trimmed population total is given by NhatμNhat \mu with Nhat=sum(w[i])Nhat = sum(w[i]), where summation is over all observations in the sample.

  • Trimming.: The methods trims the LB 100%~\cdot 100\%

     of the smallest observations and the (1 - `UB`)$~\cdot 100\%$ of the largest observations from the data.
    
  • Variance estimation.: See survey methods:

      * `svymean_trimmed`,
      * `svytotal_trimmed`.
    

Returns

The return value depends on info:

  • info = FALSE:: estimate of mean or total [double]

  • info = TRUE:: a [list] with items:

      * `characteristic` `[character]`,
      * `estimator` `[character]`,
      * `estimate` `[double]`,
      * `variance` (default: `NA`),
      * `robust` `[list]`,
      * `residuals` `[numeric vector]`,
      * `model` `[list]`,
      * `design` (default: `NA`),
      * `[call]`
    

See Also

Overview (of all implemented functions)

svymean_trimmed and svytotal_trimmed

Examples

head(workplace) # Estimated trimmed population total (5% symmetric trimming) weighted_total_trimmed(workplace$employment, workplace$weight, LB = 0.05, UB = 0.95) # Estimated trimmed population mean (5% trimming at the top of the distr.) weighted_mean_trimmed(workplace$employment, workplace$weight, UB = 0.95)
  • Maintainer: Tobias Schoch
  • License: GPL (>= 2)
  • Last published: 2024-08-22