with μ∈(0,1),ϕ>0 and y⋆∈(−∞,∞). For this distribution, E(y⋆)=ψ(μϕ)−ψ((1−μ)ϕ) and Var(y⋆)=ψ′(μϕ)+ψ′((1−μ)ϕ), where ψ
is the digamma function. See Kerman and McDonald (2015) for additional details. If y∼beta(μ,ϕ), with μ and ϕ representing the mean and precision of y, then y⋆=log(y/(1−y))∼EGB(μ,ϕ) with the density given above.
Examples
dEGB(0.2, mu =0.3, phi =1)mu =0.2; phi =2;set.seed(1)EGBsample = rEGB(1000, mu, phi)hist(EGBsample, prob =TRUE, breaks =15, main ="", las =1, ylim = c(0,0.2), xlim = c(-20,10))curve(dEGB(x, mu, phi), from =-20, to =8, add =TRUE, col ="red")# Showing the P(Y* < -5) = 0.17, where Y* ~ EGB(0.2, 2).x = seq(-20,10,0.01)y = dEGB(x, mu, phi)plot(x, y, type ="l", lwd =2, las =1)x1 = seq(-20,-5,0.01)y1 = dEGB(x1, mu, phi)polygon(c(x1,-5,-5), c(y1,0,0), col ="lightblue")plot(x, pEGB(x, mu, phi), type ="l", las =1, lwd =2, ylab = expression(P("Y*"<y)), xlab ="y")p = pEGB(0, mu, phi)q = qEGB(p, mu, phi)points(q, p, pch =16, col =2, cex =1.5)text(2,0.83, paste("(",0,",", round(p,2),")"), font =2, cex =0.8, col ="red")
References
Maluf, Y.S., Ferrari, S.L.P., and Queiroz, F.F. (2022). Robust beta regression through the logit transformation. arXiv:2209.11315.
Kerman, S. and McDonald, J.B. (2015). Skewness-kurtosis bounds for EGB1, EGB2, and special cases. Communications in Statistics - Theory and Methods, 44:3857-3864.