clustering_cv function

Cluster Cross-Validation

Cluster Cross-Validation

Cluster cross-validation splits the data into V groups of disjointed sets using k-means clustering of some variables. A resample of the analysis data consists of V-1 of the folds/clusters while the assessment set contains the final fold/cluster. In basic cross-validation (i.e. no repeats), the number of resamples is equal to V.

clustering_cv( data, vars, v = 10, repeats = 1, distance_function = "dist", cluster_function = c("kmeans", "hclust"), ... )

Arguments

  • data: A data frame.
  • vars: A vector of bare variable names to use to cluster the data.
  • v: The number of partitions of the data set.
  • repeats: The number of times to repeat the clustered partitioning.
  • distance_function: Which function should be used for distance calculations? Defaults to stats::dist(). You can also provide your own function; see Details.
  • cluster_function: Which function should be used for clustering? Options are either "kmeans" (to use stats::kmeans()) or "hclust" (to use stats::hclust()). You can also provide your own function; see Details.
  • ...: Extra arguments passed on to cluster_function.

Returns

A tibble with classes rset, tbl_df, tbl, and data.frame. The results include a column for the data split objects and an identification variable id.

Details

The variables in the vars argument are used for k-means clustering of the data into disjointed sets or for hierarchical clustering of the data. These clusters are used as the folds for cross-validation. Depending on how the data are distributed, there may not be an equal number of points in each fold.

You can optionally provide a custom function to distance_function. The function should take a data frame (as created via data[vars]) and return a stats::dist() object with distances between data points.

You can optionally provide a custom function to cluster_function. The function must take three arguments:

  • dists, a stats::dist() object with distances between data points
  • v, a length-1 numeric for the number of folds to create
  • ..., to pass any additional named arguments to your function

The function should return a vector of cluster assignments of length nrow(data), with each element of the vector corresponding to the matching row of the data frame.

Examples

data(ames, package = "modeldata") clustering_cv(ames, vars = c(Sale_Price, First_Flr_SF, Second_Flr_SF), v = 2)