Calculate bootstrap confidence intervals using various methods.
int_pctl(.data,...)## S3 method for class 'bootstraps'int_pctl(.data, statistics, alpha =0.05,...)int_t(.data,...)## S3 method for class 'bootstraps'int_t(.data, statistics, alpha =0.05,...)int_bca(.data,...)## S3 method for class 'bootstraps'int_bca(.data, statistics, alpha =0.05, .fn,...)
Arguments
.data: A data frame containing the bootstrap resamples created using bootstraps(). For t- and BCa-intervals, the apparent argument should be set to TRUE. Even if the apparent argument is set to TRUE for the percentile method, the apparent data is never used in calculating the percentile confidence interval.
...: Arguments to pass to .fn (int_bca() only).
statistics: An unquoted column name or dplyr selector that identifies a single column in the data set containing the individual bootstrap estimates. This must be a list column of tidy tibbles (with columns term and estimate). For t-intervals, a standard tidy column (usually called std.err) is required. See the examples below.
alpha: Level of significance.
.fn: A function to calculate statistic of interest. The function should take an rsplit as the first argument and the ... are required.
Returns
Each function returns a tibble with columns .lower, .estimate, .upper, .alpha, .method, and term. .method is the type of interval (eg. "percentile", "student-t", or "BCa"). term is the name of the estimate. Note the .estimate returned from int_pctl()
is the mean of the estimates from the bootstrap resamples and not the estimate from the apparent model.
Details
Percentile intervals are the standard method of obtaining confidence intervals but require thousands of resamples to be accurate. T-intervals may need fewer resamples but require a corresponding variance estimate. Bias-corrected and accelerated intervals require the original function that was used to create the statistics of interest and are computationally taxing.
Examples
library(broom)library(dplyr)library(purrr)library(tibble)lm_est <-function(split,...){ lm(mpg ~ disp + hp, data = analysis(split))%>% tidy()}set.seed(52156)car_rs <- bootstraps(mtcars,500, apparent =TRUE)%>% mutate(results = map(splits, lm_est))int_pctl(car_rs, results)int_t(car_rs, results)int_bca(car_rs, results, .fn = lm_est)# putting results into a tidy formatrank_corr <-function(split){ dat <- analysis(split) tibble( term ="corr", estimate = cor(dat$sqft, dat$price, method ="spearman"),# don't know the analytical std.err so no t-intervals std.err =NA_real_)}set.seed(69325)data(Sacramento, package ="modeldata")bootstraps(Sacramento,1000, apparent =TRUE)%>% mutate(correlations = map(splits, rank_corr))%>% int_pctl(correlations)