assertRxUi function

Assert properties of the rxUi models

Assert properties of the rxUi models

assertRxUi(ui, extra = "", .var.name = .vname(ui)) assertRxUiPrediction(ui, extra = "", .var.name = .vname(ui)) assertRxUiSingleEndpoint(ui, extra = "", .var.name = .vname(ui)) assertRxUiTransformNormal(ui, extra = "", .var.name = .vname(ui)) assertRxUiNormal(ui, extra = "", .var.name = .vname(ui)) assertRxUiMuRefOnly(ui, extra = "", .var.name = .vname(ui)) assertRxUiEstimatedResiduals(ui, extra = "", .var.name = .vname(ui)) assertRxUiPopulationOnly(ui, extra = "", .var.name = .vname(ui)) assertRxUiMixedOnly(ui, extra = "", .var.name = .vname(ui)) assertRxUiRandomOnIdOnly(ui, extra = "", .var.name = .vname(ui))

Arguments

  • ui: Model to check

  • extra: Extra text to append to the error message (like "for focei")

  • .var.name: [character(1)]

    Name of the checked object to print in assertions. Defaults to the heuristic implemented in vname.

Returns

the rxUi model

Details

These functions have different types of assertions

  • assertRxUi -- Make sure this is a proper rxode2 model (if not throw error)
  • assertRxUiSingleEndpoint -- Make sure the rxode2 model is only a single endpoint model (if not throw error)
  • assertRxUiTransformNormal -- Make sure that the model residual distribution is normal or transformably normal
  • assertRxUiNormal -- Make sure that the model residual distribution is normal
  • assertRxUiEstimatedResiduals -- Make sure that the residual error parameters are estimated (not modeled).
  • assertRxUiPopulationOnly -- Make sure the model is the population only model (no mixed effects)
  • assertRxUiMixedOnly -- Make sure the model is a mixed effect model (not a population effect, only)
  • assertRxUiPrediction -- Make sure the model has predictions
  • assertRxUiMuRefOnly -- Make sure that all the parameters are mu-referenced
  • assertRxUiRandomOnIdOnly -- Make sure there are only random effects at the ID level

Examples

one.cmt <- function() { ini({ tka <- 0.45; label("Ka") tcl <- log(c(0, 2.7, 100)); label("Cl") tv <- 3.45; label("V") eta.ka ~ 0.6 eta.cl ~ 0.3 eta.v ~ 0.1 add.sd <- 0.7 }) model({ ka <- exp(tka + eta.ka) cl <- exp(tcl + eta.cl) v <- exp(tv + eta.v) linCmt() ~ add(add.sd) }) } assertRxUi(one.cmt) # assertRxUi(rnorm) # will fail assertRxUiSingleEndpoint(one.cmt)

See Also

Other Assertions: assertCompartmentExists(), assertCompartmentName(), assertCompartmentNew(), assertVariableExists(), assertVariableNew(), testIniDf(), testRxUnbounded()

Author(s)

Matthew L. Fidler