sBIC0.2.0 package

Computing the Singular BIC for Multiple Models

BinomialMixtures

Construct a poset of binomial mixture models.

emMain

EM-algorithm for latent forests.

emSteps

One EM-iteration.

FactorAnalyses

Construct a poset of factor analysis models.

GaussianMixtures

Construct a poset of gaussian mixture models.

generateAllBinaryTrees

Generate all non-isomorphic binary trees.

getAllEdges

Edges representing the largest model.

getCovMat

Create a covariance matrix.

getData

Return the set data.

getDimension

Model dimension.

getModelWithSupport

Get model with the given support.

getNumFactorsForModel

Number of factors for a model.

getNumLeaves

Get number of leaves.

getNumModels

Number of models.

getNumSamples

Number of samples in the set data.

getNumVertices

Maximum number of vertices.

getPhi

Get the phi parameter.

getPrior

The prior on the models.

getSamplingCovMat

Sampling covariance matrix.

getSupport

Get support for a given model.

getTopOrder

Topological ordering of models.

LatentForests

Construct a poset of gaussian latent forest models.

LCAs

Construct a poset of latent class analysis models.

learnCoef

Learning coefficient

logLike

Multivariate gaussian log-likelihood.

logLikeMle

Maximum likelihood for data.

logLikeMleHelper

Help compute the MLE.

MixtureModels

Linear collections of mixture models.

mle

Maximum likelihood estimator.

parents

Parents of a model.

ReducedRankRegressions

Construct a poset of reduced rank regression models.

sBIC-package

sBIC package documentation.

sBIC

Compute the sBIC.

setData.BinomialMixtures

Set data for the binomial mixture models.

setData.FactorAnalyses

Set data for the factor analysis models.

setData.GaussianMixtures

Set data for the gaussian mixture models.

setData.LatentForests

Set data for the latent forest models.

setData.LCAs

Set data for the LCA models.

setData

Set data for a model poset.

setData.ReducedRankRegressions

Set data for the reduced rank regression models.

setPhi

Set phi parameter.

Computes the sBIC for various singular model collections including: binomial mixtures, factor analysis models, Gaussian mixtures, latent forests, latent class analyses, and reduced rank regressions.

  • Maintainer: Luca Weihs
  • License: GPL (>= 3)
  • Last published: 2016-10-01