plotDiscreteData function

Plot non Gaussian data

Plot non Gaussian data

This function provides exploration plots for non Gaussian longitudinal data (work in progress, doesn't work yet for RTTE)

plotDiscreteData(object, outcome = "continuous", verbose = FALSE, ...) plotDiscreteDataElement( object, outcome = "categorical", mirror = FALSE, irep = 1, verbose = FALSE, ... )

Arguments

  • object: an SaemixData object returned by the saemixData function. For plotDiscreteDataElement, an SaemixObject object returned by the saemix function
  • outcome: type of outcome (valid types are "TTE", "binary", "categorical", "count")
  • verbose: whether to print messages (defaults to FALSE)
  • ...: additional arguments, used to pass graphical options (to be implemented, currently not available)
  • mirror: if TRUE, plots a mirror plot of the same type as the data (the object must include simulated data)
  • irep: number of the replication to use in the mirror plot

Details

This function is a very rough first attempt at automatically creating plots to explore discrete longitudinal data.

  • for TTE data, a KM plot will be produced
  • for count, categorical and binary data, a plot showing the proportion of each score/category across time will be shown These plots can be stratified over a covariate in the data set (currently only categorical covariates) by passing an argument which.cov='name' to the call #'

Examples

# Time-to-event data data(lung.saemix) saemix.data<-saemixData(name.data=lung.saemix,header=TRUE,name.group=c("id"), name.predictors=c("time","status","cens"),name.response=c("status"), name.covariates=c("age", "sex", "ph.ecog", "ph.karno", "pat.karno", "wt.loss","meal.cal"), units=list(x="days",y="",covariates=c("yr","","-","%","%","cal","pounds"))) # Plots a KM survival plot plotDiscreteData(saemix.data, outcome="TTE") # Plots a KM survival plot, stratified by sex plotDiscreteData(saemix.data, outcome="TTE", which.cov="sex") # Count data data(rapi.saemix) saemix.data<-saemixData(name.data=rapi.saemix, name.group=c("id"), name.predictors=c("time","rapi"),name.response=c("rapi"), name.covariates=c("gender"),units=list(x="months",y="",covariates=c(""))) # Plots a histogram of the counts plotDiscreteData(saemix.data, outcome="count")

References

Brendel, K, Comets, E, Laffont, C, Laveille, C, Mentre, F. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide, Pharmaceutical Research 23 (2006), 2036-2049.

Holford, N. The Visual Predictive Check: superiority to standard diagnostic (Rorschach) plots (Abstract 738), in: 14th Meeting of the Population Approach Group in Europe, Pamplona, Spain, 2005.

Ron Keizer, tutorials on VPC TODO

See Also

SaemixObject, saemix, saemix.plot.vpc, simulateDiscreteSaemix

Author(s)

Emmanuelle Comets emmanuelle.comets@inserm.fr

  • Maintainer: Emmanuelle Comets
  • License: GPL (>= 2)
  • Last published: 2024-03-05

Useful links