invMillsRatio function

Inverse Mill's Ratio of probit models

Inverse Mill's Ratio of probit models

Calculates the 'Inverse Mill's Ratios' of univariate and bivariate probit models.

invMillsRatio( x, all = FALSE )

Arguments

  • x: probit model estimated by probit, glm or vglm.
  • all: a logical value indicating whether the inverse Mill's Ratios should be calculated for all observations.

Details

The formula to calculate the inverse Mill's ratios for univariate probit models is taken from Greene (2003, p. 785), whereas the formulas for bivariate probit models are derived in Henning and Henningsen (2005).

Returns

A data frame that contains the Inverse Mill's Ratios (IMR) and the delta values (see Greene, 2003, p. 784).

If a univariate probit estimation is provided, the variables IMR1 and IMR0 are the Inverse Mill's Ratios to correct for a sample selection bias of y = 1 and y = 0, respectively. Accordingly, 'delta1' and 'delta0' are the corresponding delta values.

If a bivariate probit estimation is provided, the variables IMRa1, IMRa0, IMRb1, and IMRb0 are the Inverse Mills Ratios to correct for a sample selection bias of y = 1 and y = 0 in equations 'a' and 'b', respectively. Accordingly, 'deltaa1', 'deltaa0', 'deltab1' and 'deltab0' are the corresponding delta values.

References

Greene, W. H. (2003) Econometric Analysis, Fifth Edition, Prentice Hall.

Henning, C.H.C.A and A. Henningsen (2005) Modeling Price Response of Farm Households in Imperfect Labor Markets in Poland: Incorporating Transaction Costs and Heterogeneity into a Farm Household Approach. Unpublished, University of Kiel, Germany.

Author(s)

Arne Henningsen

Examples

## Wooldridge( 2003 ): example 17.5, page 590 data(Mroz87) myProbit <- glm( lfp ~ nwifeinc + educ + exper + I( exper^2 ) + age + kids5 + kids618, family = binomial( link = "probit" ), data=Mroz87 ) Mroz87$IMR <- invMillsRatio( myProbit )$IMR1 myHeckit <- lm( log( wage ) ~ educ + exper + I( exper^2 ) + IMR, data = Mroz87[ Mroz87$lfp == 1, ] ) # using NO labor force participation as endogenous variable Mroz87$nolfp <- 1 - Mroz87$lfp myProbit2 <- glm( nolfp ~ nwifeinc + educ + exper + I( exper^2 ) + age + kids5 + kids618, family = binomial( link = "probit" ), data=Mroz87 ) all.equal( invMillsRatio( myProbit )$IMR1, invMillsRatio( myProbit2 )$IMR0 ) # should be true # example for bivariate probit library( "mvtnorm" ) library( "VGAM" ) nObs <- 1000 # error terms (trivariate normal) sigma <- symMatrix( c( 2, 0.7, 1.2, 1, 0.5, 1 ) ) myData <- as.data.frame( rmvnorm( nObs, c( 0, 0, 0 ), sigma ) ) names( myData ) <- c( "e0", "e1", "e2" ) # exogenous variables (indepently normal) myData$x0 <- rnorm( nObs ) myData$x1 <- rnorm( nObs ) myData$x2 <- rnorm( nObs ) # endogenous variables myData$y0 <- -1.5 + 0.8 * myData$x1 + myData$e0 myData$y1 <- ( 0.3 + 0.4 * myData$x1 + 0.3 * myData$x2 + myData$e1 ) > 0 myData$y2 <- ( -0.1 + 0.6 * myData$x1 + 0.7 * myData$x2 + myData$e2 ) > 0 # bivariate probit (using rhobit transformation) bProbit <- vglm( cbind( y1, y2 ) ~ x1 + x2, family = binom2.rho, data = myData ) summary( bProbit ) # bivariate probit (NOT using rhobit transformation) bProbit2 <- vglm( cbind( y1, y2 ) ~ x1 + x2, family = binom2.rho( lrho = "identitylink" ), data = myData ) summary( bProbit2 ) # inverse Mills Ratios imr <- invMillsRatio( bProbit ) imr2 <- invMillsRatio( bProbit2 ) all.equal( imr, imr2, tolerance = .Machine$double.eps ^ 0.25) # tests # E[ e0 | y1* > 0 & y2* > 0 ] mean( myData$e0[ myData$y1 & myData$y2 ] ) mean( sigma[1,2] * imr$IMR11a + sigma[1,3] * imr$IMR11b, na.rm = TRUE ) # E[ e0 | y1* > 0 & y2* <= 0 ] mean( myData$e0[ myData$y1 & !myData$y2 ] ) mean( sigma[1,2] * imr$IMR10a + sigma[1,3] * imr$IMR10b, na.rm = TRUE ) # E[ e0 | y1* <= 0 & y2* > 0 ] mean( myData$e0[ !myData$y1 & myData$y2 ] ) mean( sigma[1,2] * imr$IMR01a + sigma[1,3] * imr$IMR01b, na.rm = TRUE ) # E[ e0 | y1* <= 0 & y2* <= 0 ] mean( myData$e0[ !myData$y1 & !myData$y2 ] ) mean( sigma[1,2] * imr$IMR00a + sigma[1,3] * imr$IMR00b, na.rm = TRUE ) # E[ e0 | y1* > 0 ] mean( myData$e0[ myData$y1 ] ) mean( sigma[1,2] * imr$IMR1X, na.rm = TRUE ) # E[ e0 | y1* <= 0 ] mean( myData$e0[ !myData$y1 ] ) mean( sigma[1,2] * imr$IMR0X, na.rm = TRUE ) # E[ e0 | y2* > 0 ] mean( myData$e0[ myData$y2 ] ) mean( sigma[1,3] * imr$IMRX1, na.rm = TRUE ) # E[ e0 | y2* <= 0 ] mean( myData$e0[ !myData$y2 ] ) mean( sigma[1,3] * imr$IMRX0, na.rm = TRUE ) # estimation for y1* > 0 and y2* > 0 selection <- myData$y1 & myData$y2 # OLS estimation ols11 <- lm( y0 ~ x1, data = myData, subset = selection ) summary( ols11 ) # heckman type estimation heckit11 <- lm( y0 ~ x1 + IMR11a + IMR11b, data = cbind( myData, imr ), subset = selection ) summary( heckit11 ) # estimation for y1* > 0 and y2* <= 0 selection <- myData$y1 & !myData$y2 # OLS estimation ols10 <- lm( y0 ~ x1, data = myData, subset = selection ) summary( ols10 ) # heckman type estimation heckit10 <- lm( y0 ~ x1 + IMR10a + IMR10b, data = cbind( myData, imr ), subset = selection ) summary( heckit10 ) # estimation for y1* <= 0 and y2* > 0 selection <- !myData$y1 & myData$y2 # OLS estimation ols01 <- lm( y0 ~ x1, data = myData, subset = selection ) summary( ols01 ) # heckman type estimation heckit01 <- lm( y0 ~ x1 + IMR01a + IMR01b, data = cbind( myData, imr ), subset = selection ) summary( heckit01 ) # estimation for y1* <= 0 and y2* <= 0 selection <- !myData$y1 & !myData$y2 # OLS estimation ols00 <- lm( y0 ~ x1, data = myData, subset = selection ) summary( ols00 ) # heckman type estimation heckit00 <- lm( y0 ~ x1 + IMR00a + IMR00b, data = cbind( myData, imr ), subset = selection ) summary( heckit00 ) # estimation for y1* > 0 selection <- myData$y1 # OLS estimation ols1X <- lm( y0 ~ x1, data = myData, subset = selection ) summary( ols1X ) # heckman type estimation heckit1X <- lm( y0 ~ x1 + IMR1X, data = cbind( myData, imr ), subset = selection ) summary( heckit1X ) # estimation for y1* <= 0 selection <- !myData$y1 # OLS estimation ols0X <- lm( y0 ~ x1, data = myData, subset = selection ) summary( ols0X ) # heckman type estimation heckit0X <- lm( y0 ~ x1 + IMR0X, data = cbind( myData, imr ), subset = selection ) summary( heckit0X ) # estimation for y2* > 0 selection <- myData$y2 # OLS estimation olsX1 <- lm( y0 ~ x1, data = myData, subset = selection ) summary( olsX1 ) # heckman type estimation heckitX1 <- lm( y0 ~ x1 + IMRX1, data = cbind( myData, imr ), subset = selection ) summary( heckitX1 ) # estimation for y2* <= 0 selection <- !myData$y2 # OLS estimation olsX0 <- lm( y0 ~ x1, data = myData, subset = selection ) summary( olsX0 ) # heckman type estimation heckitX0 <- lm( y0 ~ x1 + IMRX0, data = cbind( myData, imr ), subset = selection ) summary( heckitX0 )