meat function

A Simple Meat Matrix Estimator

A Simple Meat Matrix Estimator

Estimating the variance of the estimating functions of a regression model by cross products of the empirical estimating functions. UTF-8

meat(x, adjust = FALSE, ...)

Arguments

  • x: a fitted model object.
  • adjust: logical. Should a finite sample adjustment be made? This amounts to multiplication with n/(nk)n/(n-k) where nn is the number of observations and kk the number of estimated parameters.
  • ...: arguments passed to the estfun function.

Details

For some theoretical background along with implementation details see Zeileis (2006).

Returns

A kxkk x k matrix corresponding containing the scaled cross products of the empirical estimating functions.

See Also

sandwich, bread, estfun

References

Zeileis A (2006). Object-Oriented Computation of Sandwich Estimators.

Journal of Statistical Software, 16 (9), 1--16. tools:::Rd_expr_doi("10.18637/jss.v016.i09")

Zeileis A, Köll S, Graham N (2020). Various Versatile Variances: An Object-Oriented Implementation ofClustered Covariances in R.

Journal of Statistical Software, 95 (1), 1--36. tools:::Rd_expr_doi("10.18637/jss.v095.i01")

Examples

x <- sin(1:10) y <- rnorm(10) fm <- lm(y ~ x) meat(fm) meatHC(fm, type = "HC") meatHAC(fm)
  • Maintainer: Achim Zeileis
  • License: GPL-2 | GPL-3
  • Last published: 2024-09-15