BipartiteSBM function

R6 class for Bipartite SBM

R6 class for Bipartite SBM

R6 class for Bipartite SBM

R6 class for Bipartite SBM

Super class

sbm::SBM -> BipartiteSBM

Active bindings

  • dimLabels: vector of two characters giving the label of each connected dimension (row, col)

  • blockProp: list of two vectors of block proportions (aka prior probabilities of each block)

  • connectParam: parameters associated to the connectivity of the SBM, e.g. matrix of inter/inter block probabilities when model is Bernoulli

  • probMemberships: matrix of estimated probabilities for block memberships for all nodes

  • nbBlocks: vector of size 2: number of blocks (rows, columns)

  • nbDyads: number of dyads (potential edges in the network)

  • nbConnectParam: number of parameter used for the connectivity

  • memberships: list of size 2: vector of memberships in row, in column.

  • indMemberships: matrix for clustering memberships

Methods

Public methods

Method new()

constructor for SBM

Usage

BipartiteSBM$new(
  model,
  nbNodes,
  blockProp,
  connectParam,
  dimLabels = c(row = "row", col = "col"),
  covarParam = numeric(length(covarList)),
  covarList = list()
)

Arguments

  • model: character describing the type of model

  • nbNodes: number of nodes in each dimension of the network

  • blockProp: parameters for block proportions (vector of list of vectors)

  • connectParam: list of parameters for connectivity with a matrix of means 'mean' and an optional scalar for the variance 'var'. The dimensions of mu must match blockProp lengths

  • dimLabels: optional labels of each dimension (in row, in column)

  • covarParam: optional vector of covariates effect

  • covarList: optional list of covariates data

Method rMemberships()

a method to sample new block memberships for the current SBM

Usage

BipartiteSBM$rMemberships(store = FALSE)

Arguments

  • store: should the sampled blocks be stored (and overwrite the existing data)? Default to FALSE

Returns

the sampled blocks

Method rEdges()

a method to sample a network data (edges) for the current SBM

Usage

BipartiteSBM$rEdges(store = FALSE)

Arguments

  • store: should the sampled edges be stored (and overwrite the existing data)? Default to FALSE

Returns

the sampled network

Method predict()

prediction under the current parameters

Usage

BipartiteSBM$predict(covarList = self$covarList, theta_p0 = 0)

Arguments

  • covarList: a list of covariates. By default, we use the covariates with which the model was estimated.

  • theta_p0: double for thresholding...

Method show()

show method

Usage

BipartiteSBM$show(type = "Bipartite Stochastic Block Model")

Arguments

  • type: character used to specify the type of SBM

Method plot()

basic matrix plot method for BipartiteSBM object or mesoscopic plot

Usage

BipartiteSBM$plot(
  type = c("data", "expected", "meso"),
  ordered = TRUE,
  plotOptions = list()
)

Arguments

  • type: character for the type of plot: either 'data' (true connection), 'expected' (fitted connection) or 'meso' (mesoscopic view). Default to 'data'.

  • ordered: logical: should the rows and columns be reordered according to the clustering? Default to TRUE.

  • plotOptions: list with the parameters for the plot. See help of the corresponding S3 method for details.

Returns

a ggplot2 object for the 'data' and 'expected', a list with the igraph object g, the layout and the plotOptions for the 'meso'

Method clone()

The objects of this class are cloneable with this method.

Usage

BipartiteSBM$clone(deep = FALSE)

Arguments

  • deep: Whether to make a deep clone.

  • Maintainer: Julien Chiquet
  • License: GPL (>= 3)
  • Last published: 2024-09-16