estimateBipartiteSBM function

Estimation of Bipartite SBMs

Estimation of Bipartite SBMs

This function performs variational inference of bipartite Stochastic Block Models, with various model for the distribution of the edges: Bernoulli, Poisson, or Gaussian models.

estimateBipartiteSBM( netMat, model = "bernoulli", dimLabels = c(row = "row", col = "col"), covariates = list(), estimOptions = list() )

Arguments

  • netMat: a matrix describing the network: either an adjacency (square) or incidence matrix with possibly weighted entries.
  • model: character describing the model for the relation between nodes ('bernoulli', 'poisson', 'gaussian', ...). Default is 'bernoulli'.
  • dimLabels: an optional vector of labels for each dimension (in row, in column)
  • covariates: a list of matrices with same dimension as mat describing covariates at the edge level. No covariate per Default.
  • estimOptions: a list of parameters controlling the inference algorithm and model selection. See details.

Returns

a list with the estimated parameters. See details...

Details

The list of parameters estimOptions essentially tunes the optimization process and the variational EM algorithm, with the following parameters

  • "nbCores integer for number of cores used. Default is 2
  • "verbosity" integer for verbosity (0, 1). Default is 1
  • "plot" boolean, should the ICL by dynamically plotted or not. Default is TRUE
  • "exploreFactor" control the exploration of the number of groups
  • "exploreMin" explore at least until exploreMin even if the exploration factor rule is achieved. Default 4. See the package blockmodels for details.
  • "exploreMax" Stop exploration at exploreMax even if the exploration factor rule is not achieved. Default Inf. See the package blockmodels for details.
  • "nbBlocksRange" minimal and maximal number or blocks explored
  • "fast" logical: should approximation be used for Bernoulli model with covariates. Default to TRUE

Examples

### ======================================= ### BIPARTITE BINARY SBM (Bernoulli model) ## Graph parameters and Sampling nbNodes <- c(60, 80) blockProp <- list(c(.5, .5), c(1/3, 1/3, 1/3)) # group proportions means <- matrix(runif(6), 2, 3) # connectivity matrix # In Bernoulli SBM, parameters is a list with a # matrix of means 'mean' which are probabilities of connection connectParam <- list(mean = means) mySampler <- sampleBipartiteSBM(nbNodes, blockProp, connectParam, model = 'bernoulli') ## Estimation myBipartiteSBM <- estimateBipartiteSBM(mySampler$networkData, estimOptions = list(plot = FALSE)) plot(myBipartiteSBM, 'expected') ### ======================================= ### BIPARTITE POISSON SBM ## Graph parameters & Sampling nbNodes <- c(60, 80) blockProp <- list(c(.5, .5), c(1/3, 1/3, 1/3)) # group proportions means <- matrix(rbinom(6, 30, 0.25), 2, 3) # connectivity matrix connectParam <- list(mean = means) mySampler <- sampleBipartiteSBM(nbNodes, blockProp, connectParam, model = 'poisson') ## Estimation myBipartiteSBM <- estimateBipartiteSBM(mySampler$networkData, 'poisson', estimOptions = list(plot = FALSE)) plot(myBipartiteSBM, 'expected') ### ======================================= ### BIPARTITE GAUSSIAN SBM ## Graph parameters & sampling nbNodes <- c(60, 80) blockProp <- list(c(.5, .5), c(1/3, 1/3, 1/3)) # group proportions means <- 20 * matrix(runif(6), 2, 3) # connectivity matrix connectParam <- list(mean = means, var = 1) mySampler <- sampleBipartiteSBM(nbNodes, blockProp, connectParam, model = 'gaussian') ## Estimation myBipartiteSBM <- estimateBipartiteSBM(mySampler$networkData, 'gaussian', estimOptions = list(plot = FALSE)) plot(myBipartiteSBM, 'expected')
  • Maintainer: Julien Chiquet
  • License: GPL (>= 3)
  • Last published: 2024-09-16