Estimation of Simple SBMs
This function performs variational inference of simple Stochastic Block Models, with various model for the distribution of the edges: Bernoulli, Poisson, or Gaussian models.
estimateSimpleSBM( netMat, model = "bernoulli", directed = !isSymmetric(netMat), dimLabels = c("node"), covariates = list(), estimOptions = list() )
netMat
: a matrix describing the network: either an adjacency (square) or incidence matrix with possibly weighted entries.model
: character describing the model for the relation between nodes ('bernoulli'
, 'poisson'
, 'gaussian'
, ...). Default is 'bernoulli'
.directed
: logical: is the network directed or not? Only relevant when type
is 'Simple'
. Default is TRUE
if netMat
is symmetric, FALSE
otherwisedimLabels
: an optional label for referring to the nodescovariates
: a list of matrices with same dimension as mat describing covariates at the edge level. No covariate per Default.estimOptions
: a list of parameters controlling the inference algorithm and model selection. See details.a list with the estimated parameters. See details...
The list of parameters estimOptions
essentially tunes the optimization process and the variational EM algorithm, with the following parameters
TRUE
### ======================================= ### SIMPLE BINARY SBM (Bernoulli model) ## Graph parameters & Sampling nbNodes <- 60 blockProp <- c(.5, .25, .25) # group proportions means <- diag(.4, 3) + 0.05 # connectivity matrix: affiliation network connectParam <- list(mean = means) mySampler <- sampleSimpleSBM(nbNodes, blockProp, connectParam) adjacencyMatrix <- mySampler$networkData ## Estimation mySimpleSBM <- estimateSimpleSBM(adjacencyMatrix, 'bernoulli', estimOptions = list(plot = FALSE)) plot(mySimpleSBM, 'data', ordered = FALSE) plot(mySimpleSBM, 'data') plot(mySimpleSBM, 'expected', ordered = FALSE) plot(mySimpleSBM, 'expected') plot(mySimpleSBM, 'meso') ### ======================================= ### SIMPLE POISSON SBM ## Graph parameters & Sampling nbNodes <- 60 blockProp <- c(.5, .25, .25) # group proportions means <- diag(15., 3) + 5 # connectivity matrix: affiliation network connectParam <- list(mean = means) mySampler <- sampleSimpleSBM(nbNodes, blockProp, list(mean = means), model = "poisson") adjacencyMatrix <- mySampler$networkData ## Estimation mySimpleSBM <- estimateSimpleSBM(adjacencyMatrix, 'poisson', estimOptions = list(plot = FALSE)) plot(mySimpleSBM, 'data', ordered = FALSE) plot(mySimpleSBM, 'data') plot(mySimpleSBM, 'expected', ordered = FALSE) plot(mySimpleSBM, 'expected') ### ======================================= ### SIMPLE GAUSSIAN SBM ## Graph parameters & Sampling nbNodes <- 60 blockProp <- c(.5, .25, .25) # group proportions means <- diag(15., 3) + 5 # connectivity matrix: affiliation network connectParam <- list(mean = means, var = 2) mySampler <- sampleSimpleSBM(nbNodes, blockProp, connectParam, model = "gaussian") ## Estimation mySimpleSBM <- estimateSimpleSBM(mySampler$networkData, 'gaussian', estimOptions = list(plot = FALSE)) plot(mySimpleSBM, 'data', ordered = FALSE) plot(mySimpleSBM, 'data') plot(mySimpleSBM, 'expected', ordered = FALSE) plot(mySimpleSBM, 'expected')