estimateSimpleSBM function

Estimation of Simple SBMs

Estimation of Simple SBMs

This function performs variational inference of simple Stochastic Block Models, with various model for the distribution of the edges: Bernoulli, Poisson, or Gaussian models.

estimateSimpleSBM( netMat, model = "bernoulli", directed = !isSymmetric(netMat), dimLabels = c("node"), covariates = list(), estimOptions = list() )

Arguments

  • netMat: a matrix describing the network: either an adjacency (square) or incidence matrix with possibly weighted entries.
  • model: character describing the model for the relation between nodes ('bernoulli', 'poisson', 'gaussian', ...). Default is 'bernoulli'.
  • directed: logical: is the network directed or not? Only relevant when type is 'Simple'. Default is TRUE if netMat is symmetric, FALSE otherwise
  • dimLabels: an optional label for referring to the nodes
  • covariates: a list of matrices with same dimension as mat describing covariates at the edge level. No covariate per Default.
  • estimOptions: a list of parameters controlling the inference algorithm and model selection. See details.

Returns

a list with the estimated parameters. See details...

Details

The list of parameters estimOptions essentially tunes the optimization process and the variational EM algorithm, with the following parameters

  • "nbCores integer for number of cores used. Default is 2
  • "verbosity" integer for verbosity (0, 1). Default is 1
  • "plot" boolean, should the ICL by dynamically plotted or not. Default is TRUE
  • "exploreFactor" control the exploration of the number of groups
  • "exploreMin" explore at least until exploreMin even if the exploration factor rule is achieved. Default 4. See the package blockmodels for details.
  • "exploreMax" Stop exploration at exploreMax even if the exploration factor rule is not achieved. Default Inf. See the package blockmodels for details.
  • "nbBlocksRange" minimal and maximal number or blocks explored
  • "fast" logical: should approximation be used for Bernoulli model with covariates. Default to TRUE

Examples

### ======================================= ### SIMPLE BINARY SBM (Bernoulli model) ## Graph parameters & Sampling nbNodes <- 60 blockProp <- c(.5, .25, .25) # group proportions means <- diag(.4, 3) + 0.05 # connectivity matrix: affiliation network connectParam <- list(mean = means) mySampler <- sampleSimpleSBM(nbNodes, blockProp, connectParam) adjacencyMatrix <- mySampler$networkData ## Estimation mySimpleSBM <- estimateSimpleSBM(adjacencyMatrix, 'bernoulli', estimOptions = list(plot = FALSE)) plot(mySimpleSBM, 'data', ordered = FALSE) plot(mySimpleSBM, 'data') plot(mySimpleSBM, 'expected', ordered = FALSE) plot(mySimpleSBM, 'expected') plot(mySimpleSBM, 'meso') ### ======================================= ### SIMPLE POISSON SBM ## Graph parameters & Sampling nbNodes <- 60 blockProp <- c(.5, .25, .25) # group proportions means <- diag(15., 3) + 5 # connectivity matrix: affiliation network connectParam <- list(mean = means) mySampler <- sampleSimpleSBM(nbNodes, blockProp, list(mean = means), model = "poisson") adjacencyMatrix <- mySampler$networkData ## Estimation mySimpleSBM <- estimateSimpleSBM(adjacencyMatrix, 'poisson', estimOptions = list(plot = FALSE)) plot(mySimpleSBM, 'data', ordered = FALSE) plot(mySimpleSBM, 'data') plot(mySimpleSBM, 'expected', ordered = FALSE) plot(mySimpleSBM, 'expected') ### ======================================= ### SIMPLE GAUSSIAN SBM ## Graph parameters & Sampling nbNodes <- 60 blockProp <- c(.5, .25, .25) # group proportions means <- diag(15., 3) + 5 # connectivity matrix: affiliation network connectParam <- list(mean = means, var = 2) mySampler <- sampleSimpleSBM(nbNodes, blockProp, connectParam, model = "gaussian") ## Estimation mySimpleSBM <- estimateSimpleSBM(mySampler$networkData, 'gaussian', estimOptions = list(plot = FALSE)) plot(mySimpleSBM, 'data', ordered = FALSE) plot(mySimpleSBM, 'data') plot(mySimpleSBM, 'expected', ordered = FALSE) plot(mySimpleSBM, 'expected')
  • Maintainer: Julien Chiquet
  • License: GPL (>= 3)
  • Last published: 2024-09-16