sampleBipartiteSBM function

Sampling of Bipartite SBMs

Sampling of Bipartite SBMs

This function samples a simple Stochastic Block Models, with various model for the distribution of the edges: Bernoulli, Poisson, or Gaussian models, and possibly with covariates

sampleBipartiteSBM( nbNodes, blockProp, connectParam, model = "bernoulli", dimLabels = c(row = "row", col = "col"), covariates = list(), covariatesParam = numeric(0) )

Arguments

  • nbNodes: number of nodes in the network
  • blockProp: parameters for block proportions: list of size two with row and column block proportions
  • connectParam: list of parameters for connectivity with a matrix of means 'mean' and an optional matrix of variances 'var', the sizes of which must match blockProp length (in row, respectively in column)
  • model: character describing the model for the relation between nodes ('bernoulli', 'poisson', 'gaussian', 'ZIgaussian'). Default is 'bernoulli'.
  • dimLabels: an optional list of labels for each dimension (in row, in column)
  • covariates: a list of matrices with same dimension as mat describing covariates at the edge level. No covariate per Default.
  • covariatesParam: optional vector of covariates effect. A zero length numeric vector by default.

Returns

an object with class BipartiteSBM

Examples

### ======================================= ### BIPARTITE BERNOULLI SBM ## Graph parameters nbNodes <- c(100, 120) blockProp <- list(c(.5, .5), c(1/3, 1/3, 1/3)) # group proportions means <- matrix(runif(6), 2, 3) # connectivity matrix # In Bernoulli SBM, parameters is a list with # a matrix of means 'mean' which are probabilities of connection connectParam <- list(mean = means) ## Graph Sampling dimLabels = c(row='Reader',col='Book') mySampler <- sampleBipartiteSBM(nbNodes, blockProp, connectParam, model = 'bernoulli',dimLabels) plot(mySampler) plot(mySampler,type='meso',plotOptions = list(vertex.label.name=list(row='Reader',col='Book'))) plot(mySampler,type='meso',plotOptions = list(vertex.label.name=c('A','B'),vertex.size = 1.4)) mySampler$rMemberships() # sample new memberships mySampler$rEdges() # sample new edges mySampler$rNetwork() # sample a new networrk (blocks and edges) ### ======================================= ### BIPARTITE POISSON SBM ## Graph parameters nbNodes <- c(100, 120) blockProp <- list(c(.5, .5), c(1/3, 1/3, 1/3)) # group proportions means <- matrix(rbinom(6, 30, 0.25), 2, 3) # connectivity matrix # In Poisson SBM, parameters is a list with a matrix of # means 'mean' which are a mean integer value taken by edges connectParam <- list(mean = means) ## Graph Sampling dimLabels = c(row = 'Ind', col = 'Service') mySampler <- sampleBipartiteSBM(nbNodes, blockProp, connectParam, model = 'poisson', dimLabels) plot(mySampler,type='expected') plotOptions = list(vertex.label.name=c('U','V'),vertex.size = c(1.4,1.3)) plot(mySampler, type='meso', plotOptions = plotOptions) hist(mySampler$networkData) ### ======================================= ### BIPARTITE GAUSSIAN SBM ## Graph parameters nbNodes <- c(100, 120) blockProp <- list(c(.5, .5), c(1/3, 1/3, 1/3)) # group proportions means <- 20 * matrix(runif(6), 2, 3) # connectivity matrix # In Gaussian SBM, parameters is a list with a matrix # of means 'mean' and a matrix of variances 'var' connectParam <- list(mean = means, var = 1) ## Graph Sampling mySampler <- sampleBipartiteSBM(nbNodes, blockProp, connectParam, model = 'gaussian') plot(mySampler) hist(mySampler$networkData)
  • Maintainer: Julien Chiquet
  • License: GPL (>= 3)
  • Last published: 2024-09-16