This function samples a simple Stochastic Block Models, with various model for the distribution of the edges: Bernoulli, Poisson, or Gaussian models, and possibly with covariates
sampleBipartiteSBM( nbNodes, blockProp, connectParam, model ="bernoulli", dimLabels = c(row ="row", col ="col"), covariates = list(), covariatesParam = numeric(0))
Arguments
nbNodes: number of nodes in the network
blockProp: parameters for block proportions: list of size two with row and column block proportions
connectParam: list of parameters for connectivity with a matrix of means 'mean' and an optional matrix of variances 'var', the sizes of which must match blockProp length (in row, respectively in column)
model: character describing the model for the relation between nodes ('bernoulli', 'poisson', 'gaussian', 'ZIgaussian'). Default is 'bernoulli'.
dimLabels: an optional list of labels for each dimension (in row, in column)
covariates: a list of matrices with same dimension as mat describing covariates at the edge level. No covariate per Default.
covariatesParam: optional vector of covariates effect. A zero length numeric vector by default.
Returns
an object with class BipartiteSBM
Examples
### =======================================### BIPARTITE BERNOULLI SBM## Graph parametersnbNodes <- c(100,120)blockProp <- list(c(.5,.5), c(1/3,1/3,1/3))# group proportionsmeans <- matrix(runif(6),2,3)# connectivity matrix# In Bernoulli SBM, parameters is a list with# a matrix of means 'mean' which are probabilities of connectionconnectParam <- list(mean = means)## Graph SamplingdimLabels = c(row='Reader',col='Book')mySampler <- sampleBipartiteSBM(nbNodes, blockProp, connectParam, model ='bernoulli',dimLabels)plot(mySampler)plot(mySampler,type='meso',plotOptions = list(vertex.label.name=list(row='Reader',col='Book')))plot(mySampler,type='meso',plotOptions = list(vertex.label.name=c('A','B'),vertex.size =1.4))mySampler$rMemberships()# sample new membershipsmySampler$rEdges()# sample new edgesmySampler$rNetwork()# sample a new networrk (blocks and edges)### =======================================### BIPARTITE POISSON SBM## Graph parametersnbNodes <- c(100,120)blockProp <- list(c(.5,.5), c(1/3,1/3,1/3))# group proportionsmeans <- matrix(rbinom(6,30,0.25),2,3)# connectivity matrix# In Poisson SBM, parameters is a list with a matrix of# means 'mean' which are a mean integer value taken by edgesconnectParam <- list(mean = means)## Graph SamplingdimLabels = c(row ='Ind', col ='Service')mySampler <- sampleBipartiteSBM(nbNodes, blockProp, connectParam, model ='poisson', dimLabels)plot(mySampler,type='expected')plotOptions = list(vertex.label.name=c('U','V'),vertex.size = c(1.4,1.3))plot(mySampler, type='meso', plotOptions = plotOptions)hist(mySampler$networkData)### =======================================### BIPARTITE GAUSSIAN SBM## Graph parametersnbNodes <- c(100,120)blockProp <- list(c(.5,.5), c(1/3,1/3,1/3))# group proportionsmeans <-20* matrix(runif(6),2,3)# connectivity matrix# In Gaussian SBM, parameters is a list with a matrix# of means 'mean' and a matrix of variances 'var'connectParam <- list(mean = means, var =1)## Graph SamplingmySampler <- sampleBipartiteSBM(nbNodes, blockProp, connectParam, model ='gaussian')plot(mySampler)hist(mySampler$networkData)