## S3 method for class 'scaleboot'plot(x, models=NULL, select=NULL, sort.by=c("aic","none"), k=NULL, s=NULL, sp=NULL, lambda=NULL, bpk=NULL, xval = c("square","inverse","sigma"), yval = c("psi","zvalue","pvalue"), xlab =NULL, ylab =NULL,log.xy ="", xlim =NULL, ylim =NULL, add = F, length.x =300, main=NULL, col =1:6, lty =1:5, lwd = par("lwd"), ex.pch=2:7, pch =1, cex =1, pt.col = col[1],pt.lwd = lwd[1], legend.x =NULL, inset =0.1, cex.legend=1,...)## S3 method for class 'summary.scaleboot'plot(x, select="average", k=x$parex$k,s=x$parex$s,sp=x$parex$sp,lambda=x$parex$lambda,...)## S3 method for class 'scalebootv'plot(x,models=attr(x,"models"),sort.by="none",...)## S3 method for class 'summary.scalebootv'plot(x, select="average",...)## S3 method for class 'scaleboot'lines(x,z,models=names(x$fi), k=NULL,s=NULL,sp=NULL,lambda=NULL, bpk=NULL, length.x=z$length.x, col=z$col,lty=z$lty,lwd=z$lwd,...)sblegend(x="topright",y=NULL,z,inset=0.1,...)sbplotbeta(beta, p=0.05, col.contour=c("blue","red","green"), drawcontours =TRUE, drawlabels =TRUE, labcex=1,length=100, cex=1, col="black", xlim=NULL, ylim=NULL, lim.countourexpand=0)
Arguments
x: an object used to select a method. For sblegend, x is a numeric or character such as "lefttop" or "righttop", which is passed to legend.
models: character vector of model names. Numeric is also allowed.
select: "average", "best", or one of the fitted models.
sort.by: "aic" or "none".
k: k for extrapolation.
s: s for extrapolation.
sp: sp for extrapolation.
lambda: a numeric of specifying the type of p-values; Bayesian (lambda=0) Frequentist (lambda=1).
bpk: (experimental for 2-step bootstrap)
xval: specifies x-axis. "square" for σ2, "inverse" for 1/σ, "sigma" for σ.
yval: specifies y-axis. "zvalue" for ψ(σ2∣β)/σ or qnorm(1-bp[i]), "pvalue" for 1−Φ(ψ(σ2∣β)/σ) or bp[i], "psi" for ψ(σ2∣β) or sqrt(sa[i])*qnorm(1-bp[i]).
xlab: label for x-axis.
ylab: label for y-axis.
log.xy: character to specify log-scale. "", "x", "y", or "xy".
xlim: range for x-axis.
ylim: range for y-axis.
add: logical for adding another plot.
length.x: the number of segments to draw curves.
main: for title.
col: color for model curves.
lty: lty for model curves.
lwd: lwd for model curves.
ex.pch: pch for extrapolation.
pch: pch for bp points.
cex: cex for bp points.
pt.col: col for bp points.
pt.lwd: lwd for bp points.
legend.x: passed to sblegend as the first argument.
...: further arguments passed to or from other methods.
z: output from previous plot.scaleboot.
y: numeric passed to legend.
inset: inset distance from the margins, which is passed to legend.
cex.legend: cex for legend
beta: matrix of beta values. beta[,1] is beta0, beta[,2] is beta1.
p: significance level for drawing contour lines.
col.contour: colors for SI, AU, BP.
drawcontours: draw contours when TRUE.
drawlabels: draw labels at contours when TRUE.
labcex: cex for contours.
length: grid size for drawing contours.
lim.countourexpand: expand contour plotting region
Details
The plot method plots bootstrap probabilities and calls the lines
method, which draws fitted curves for models.
Author(s)
Hidetoshi Shimodaira
See Also
sbfit, sbphylo.
Examples
data(mam15)## a single plota <- mam15.relltest[["t4"]]# an object of class "scaleboot"plot(a,legend="topleft")# x=sigma^2, y=psiplot(a,xval="inverse",yval="zvalue", legend="topleft")# x=1/sigma, y=z-valueplot(a,xval="sigma",log="x",yval="pvalue", legend="topleft")# x=log(sigma), y=probability## plot of extrapolationplot(summary(a),legend="topleft")## multiple plotsb <- mam15.relltest[1:15]# an object of class "scalebootv"plot(b)# x=sigma^2, y=psi