sbaic function

Akaike's Information Criterion

Akaike's Information Criterion

Extract or modify the AIC values for models.

sbaic(x,...) ## S3 method for class 'scaleboot' sbaic(x,k,...) ## S3 method for class 'scalebootv' sbaic(x,...) sbaic(x) <- value ## S3 replacement method for class 'scaleboot' sbaic(x) <- value ## S3 replacement method for class 'scalebootv' sbaic(x) <- value

Arguments

  • x: an object used to select a method.
  • k: numeric, the penalty per parameter to be used.
  • value: numeric vector of AIC values for models.
  • ...: further arguments passed to and from other methods.

Details

sbaic can be used to modify the aic components for models in x as shown in the examples below.

Returns

For an object of class "scaleboot", sbaic returns a numeric vector of AIC values for models. If k is missing, then the aic components in the fi vector of x are returned. If k is specified, rss-k*df is calculated for each model. For the usual AIC, k=2. For the BIC (Schwarz's Bayesian information criterion), k=log(sum(x$nb)).

References

Sakamoto, Y., Ishiguro, M., and Kitagawa G. (1986). Akaike Information Criterion Statistics. D. Reidel Publishing Company.

Author(s)

Hidetoshi Shimodaira

See Also

sbfit.

Examples

data(mam15) a <- mam15.relltest[["t4"]] # an object of class "scaleboot" sbaic(a) # print AIC for models sbaic(a,k=log(sum(a$nb))) # print BIC for models sbaic(a) <- sbaic(a,k=log(sum(a$nb))) # set BIC sbaic(a) # print BIC for models