beta: numeric vector of parameters; β0=beta[1], β1=beta[2],... βm−1=beta[m], where m is the number of parameters.
s: σ02.
k: numeric to specify the order of derivatives.
sp: σp2.
lambda: a numeric of specifying the type of p-values; Bayesian (lambda=0) Frequentist (lambda=1).
aux: auxiliary parameter. Currently not used.
check: logical for boundary check.
zfun: z-value function with (s,beta) as parameters.
eps: delta for numerical computation of derivatives.
m: numeric vector to specify the numbers of parameters.
one.sided: logical to include poly and sing models.
two.sided: logical to include poa and sia models.
rev.sided: logical to include pob and sib models.
poly: maximum number of parameters in poly models.
sing: maximum number of parameters in sing models.
sphe: maximum number of parameters in sphe models.
poa: maximum number of parameters in poa models.
pob: maximum number of parameters in pob models.
poc: maximum number of parameters in poc models.
pod: maximum number of parameters in pod models.
sia: maximum number of parameters in sia models.
sib: maximum number of parameters in sib models.
sic: maximum number of parameters in sic models.
sid: maximum number of parameters in sid models.
pom: maximum number of parameters in pom models.
sim: maximum number of parameters in sim models.
Details
For k=1, the sbpsi functions return their ψ function values at σ2=σ02. Currently, four types of sbpsi functions are implemented. sbpsi.poly defines the polynomial model;
ψ(σ2∣β)=j=0∑m−1βjσ2j
for m≥1. sbpsi.sing defines the singular model;
ψ(σ2∣β)=β0+j=1∑m−21+βm−1(σ−1)βjσ2j
for m≥3 and 0≤βm−1≤1. sbpsi.sphe defines the spherical model; currently the number of parameters must be m=3. sbpsi.generic is a generic sbpsi function for specified zfun.
For k>1, the sbpsi functions return values extrapolated at σ2=σp2 using derivatives up to order k−1
evaluated at σ2=σ02;
qk=j=0∑k−1j!(σp2−σ02)jdxjdjψ(x∣β)σ02,
which reduces to ψ(σ02∣β) for k=1. In the summary.scaleboot, the AU p-values are defined by pk=1−Φ(qk) for k≥1.
Returns
sbpsi.poly and sbpsi.sing are examples of a sbpsi function; users can develop their own sbpsi functions for better model fitting by preparing sbpsi.foo and sbini.foo
functions for model foo. If check=FALSE, a sbpsi function returns the ψ function value or the extrapolation value. If check=TRUE, a sbpsi function returns NULL when all the elements of beta are included in the their valid intervals. Otherwise, a sbpsi function returns a list with components beta for the parameter value being modified to be on a boundary of the interval and mask, a logical vector indicating which elements are not on the boundary.
sbmodelnames returns a character vector of model names.