cpGModule function

Identify cell phenotype activated gene module

Identify cell phenotype activated gene module

Mining activated gene modules in specific cell phenotype.

cpGModule( network.data, cellset, nperm = 100, cut.pvalue = 0.01, cut.fdr = 0.05, parallel.cores = 2, rwr.gamma = 0.7, normal_dist = TRUE, verbose = TRUE )

Arguments

  • network.data: Network data constructed by the ConNetGNN function.
  • cellset: A vector of cell id. The specified cell set, which will be used as the restart set.
  • nperm: Number of random permutations. Default: 100.
  • cut.pvalue: The threshold of P-value, and genes below this threshold are regarded as gene modules activated by the cell set. Default: 0.01.
  • cut.fdr: The threshold of false discovery rate (FDR), and genes below this threshold are regarded as gene modules activated by the cell set. Default: 0.05.
  • parallel.cores: Number of processors to use when doing the calculations in parallel (default: 2). If parallel.cores=0, then it will use all available core processors unless we set this argument with a smaller number.
  • rwr.gamma: Restart parameter. Default: 0.7.
  • normal_dist: Whether to use pnorm to calculate P values. Default: TRUE.Note that if normal_dist is FALSE, we need to increase nperm (we recommend 100).
  • verbose: Gives information about each step. Default: TRUE.

Returns

A data frame contains four columns:

  • Genes: Gene ID.
  • AS: Activity score.
  • Pvalue: Significant P-value.
  • FDR: False discovery rate.

Details

cpGModule

The cpGModule function takes a user-defined cell set as a restart set to automatically identify activated gene modules. A perturbation analysis was used to calculate a significant P-value for each gene. The Benjamini & Hochberg (BH) method was used to adjust the P-value to obtain the FDR. Genes with a significance level less than the set threshold are considered as cell phenotype activated gene modules.

Examples

require(parallel) require(stats) # Load the result of the ConNetGNN function. data(ConNetGNN_data) data(Hv_exp) # Construct the cell set corresponding to 0h. index<-grep("0h",colnames(Hv_exp)) cellset<-colnames(Hv_exp)[index] cpGModule_data<-cpGModule(ConNetGNN_data,cellset,nperm=10,parallel.cores=1)
  • Maintainer: Xudong Han
  • License: GPL (>= 2)
  • Last published: 2023-08-08

Useful links