HPloglik function

Ait-Sahalia Hermite polynomial expansion approximation of the likelihood

Ait-Sahalia Hermite polynomial expansion approximation of the likelihood

Ait-Sahalia Hermite polynomial expansion and Euler approximation of the likelihood of a process solution of a stochastic differential equation. These functions are useful to calculate approximated maximum likelihood estimators when the transition density of the process is not known.

HPloglik(X, theta, M, F, s, log=TRUE)

Arguments

  • X: a ts object containing a sample path of an sde.
  • theta: vector of parameters.
  • M: list of derivatives; see details.
  • F: the transform function; see details.
  • s: drift and diffusion coefficient; see details.
  • log: logical; if TRUE, the log-likelihood is returned.

Details

The function HPloglik returns the Hermite polynomial approximation of the likelihood of a diffusion process transformed to have a unitary diffusion coefficient. The function F is the transform function, and s is the original diffusion coefficient. The list of functions M contains the transformed drift in M[[1]] and the subsequent six derivatives in x of M[[1]]. The functions F, s, and M have arguments (t,x,theta).

Returns

  • x: a number

References

Ait-Sahalia, Y. (1996) Testing Continuous-Time Models of the Spot Interest Rate, Review of Financial Studies, 9(2), 385-426.

Author(s)

Stefano Maria Iacus

Examples

set.seed(123) d <- expression(-1*x) s <- expression(2) sde.sim(drift=d, sigma=s) -> X M0 <- function(t, x, theta) -theta[1]*x M1 <- function(t, x, theta) -theta[1] M2 <- function(t, x, theta) 0 M3 <- function(t, x, theta) 0 M4 <- function(t, x, theta) 0 M5 <- function(t, x, theta) 0 M6 <- function(t, x, theta) 0 mu <- list(M0, M1, M2, M3, M4, M5, M6) F <- function(t, x, theta) x/sqrt(theta[2]) S <- function(t, x, theta) sqrt(theta[2]) true.loglik <- function(theta) { DELTA <- deltat(X) lik <- 0 for(i in 2:length(X)) lik <- lik + dnorm(X[i], mean=X[i-1]*exp(-theta[1]*DELTA), sd = sqrt((1-exp(-2*theta[1]*DELTA))*theta[2]/ (2*theta[1])),TRUE) lik } xx <- seq(-3,3,length=100) sapply(xx, function(x) HPloglik(X,c(x,4),mu,F,S)) -> px sapply(xx, function(x) true.loglik(c(x,4))) -> py plot(xx,px,type="l",xlab=expression(beta),ylab="log-likelihood") lines(xx,py, lty=3) # true
  • Maintainer: Stefano Maria Iacus
  • License: GPL (>= 2)
  • Last published: 2022-08-09

Useful links