Pedersen's approximation of the likelihood of a process solution of a stochastic differential equation. This function is useful to calculate approximated maximum likelihood estimators when the transition density of the process is not known. It is computationally intensive.
SIMloglik(X, theta, d, s, M=10000, N=2, log=TRUE)
Arguments
X: a ts object containing a sample path of an sde.
theta: vector of parameters.
d,s: drift and diffusion coefficients; see details.
log: logical; if TRUE, the log-likelihood is returned.
N: number of subintervals; see details.
M: number of Monte Carlo simulations, which should be an even number; see details.
Details
The function SIMloglik returns the simulated log-likelihood obtained by Pedersen's method. The functions s and d are the drift and diffusion coefficients with arguments (t,x,theta).
Returns
x: a number
Author(s)
Stefano Maria Iacus
References
Pedersen, A. R. (1995) A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations, Scand. J. Statist., 22, 55-71.
Examples
## Not run:set.seed(123)d <- expression(-1*x)s <- expression(2)sde.sim(drift=d, sigma=s,N=50,delta=0.01)-> X
S <-function(t, x, theta) sqrt(theta[2])B <-function(t, x, theta)-theta[1]*x
true.loglik <-function(theta){ DELTA <- deltat(X) lik <-0for(i in2:length(X)) lik <- lik + dnorm(X[i], mean=X[i-1]*exp(-theta[1]*DELTA), sd = sqrt((1-exp(-2*theta[1]*DELTA))* theta[2]/(2*theta[1])),TRUE) lik
}xx <- seq(-10,10,length=20)sapply(xx,function(x) true.loglik(c(x,4)))-> py
sapply(xx,function(x) EULERloglik(X,c(x,4),B,S))-> pz
sapply(xx,function(x) SIMloglik(X,c(x,4),B,S,M=10000,N=5))-> pw
plot(xx,py,type="l",xlab=expression(beta), ylab="log-likelihood",ylim=c(0,15))# truelines(xx,pz, lty=2)# Eulerlines(xx,pw, lty=3)# Simulated## End(Not run)