Nonparametric invariant density, drift, and diffusion coefficient estimation
Nonparametric invariant density, drift, and diffusion coefficient estimation
Implementation of simple Nadaraya-Watson nonparametric estimation of drift and diffusion coefficient, and plain kernel density estimation of the invariant density for a one-dimensional diffusion process.
ksdrift(x, bw, n =512)ksdiff(x, bw, n =512)ksdens(x, bw, n =512)
Arguments
x: a ts object.
bw: bandwidth.
n: number of points in which to calculate the estimates.
Details
These functions return the nonparametric estimate of the drift or diffusion coefficients for data x using the Nadaraya-Watson estimator for diffusion processes.
ksdens returns the density estimates of the invariant density.
If not provided, the bandwidth bw
is calculated using Scott's rule (i.e., bw = len^(-1/5)*sd(x)) where len=length(x)
is the number of observed points of the diffusion path.
Returns
val: an invisible list of x and y coordinates and an object of class density in the case of invariant density estimation
Author(s)
Stefano Maria Iacus
References
Ait-Sahalia, Y. (1996) Nonparametric pricing of interest rate derivative securities, Econometrica, 64, 527-560.
Bandi, F., Phillips, P. (2003) Fully nonparametric estimation of scalar diffusion models, Econometrica, 71, 241-283.
Florens-Zmirou, D. (1993) On estimating the diffusion coefficient from discrete observations, Journal of Applied Probability, 30, 790-804.