rcBS function

Black-Scholes-Merton or geometric Brownian motion process conditional law

Black-Scholes-Merton or geometric Brownian motion process conditional law

Density, distribution function, quantile function, and random generation for the conditional law X(t)X(0)=x0X(t) | X(0) = x0

of the Black-Scholes-Merton process also known as the geometric Brownian motion process.

dcBS(x, Dt, x0, theta, log = FALSE) pcBS(x, Dt, x0, theta, lower.tail = TRUE, log.p = FALSE) qcBS(p, Dt, x0, theta, lower.tail = TRUE, log.p = FALSE) rcBS(n=1, Dt, x0, theta)

Arguments

  • x: vector of quantiles.
  • p: vector of probabilities.
  • Dt: lag or time.
  • x0: the value of the process at time t; see details.
  • theta: parameter of the Black-Scholes-Merton process; see details.
  • n: number of random numbers to generate from the conditional distribution.
  • log, log.p: logical; if TRUE, probabilities pp are given as log(p)log(p).
  • lower.tail: logical; if TRUE (default), probabilities are P[X <= x]; otherwise, P[X > x].

Details

This function returns quantities related to the conditional law of the process solution of

dXt=θ1Xtdt+θ2XtdWt.dXt=theta[1]Xtdt+theta[2]XtdWt. {\rm d}X_t = \theta_1 X_t {\rm d}t + \theta_2 X_t {\rm d}W_t.dX_t = theta[1]*Xt*dt + theta[2]*Xt*dWt.

Constraints: theta[3]>0theta[3]>0.

Returns

  • x: a numeric vector

References

Black, F., Scholes, M.S. (1973) The pricing of options and corporate liabilities, Journal of Political Economy, 81, 637-654.

Merton, R. C. (1973) Theory of rational option pricing, Bell Journal of Economics and Management Science, 4(1), 141-183.

Author(s)

Stefano Maria Iacus

Examples

rcBS(n=1, Dt=0.1, x0=1, theta=c(2,1))
  • Maintainer: Stefano Maria Iacus
  • License: GPL (>= 2)
  • Last published: 2022-08-09

Useful links