Conditional law of the Cox-Ingersoll-Ross process
Density, distribution function, quantile function and random generation for the conditional law of the Cox-Ingersoll-Ross process.
dcCIR(x, Dt, x0, theta, log = FALSE) pcCIR(x, Dt, x0, theta, lower.tail = TRUE, log.p = FALSE) qcCIR(p, Dt, x0, theta, lower.tail = TRUE, log.p = FALSE) rcCIR(n=1, Dt, x0, theta)
x
: vector of quantiles.p
: vector of probabilities.Dt
: lag or time.x0
: the value of the process at time t
; see details.theta
: parameter of the Ornstein-Uhlenbeck process; see details.n
: number of random numbers to generate from the conditional distribution.log, log.p
: logical; if TRUE, probabilities are given as .lower.tail
: logical; if TRUE (default), probabilities are P[X <= x]
; otherwise P[X > x]
.This function returns quantities related to the conditional law of the process solution of
Constraints: , all positive.
Cox, J.C., Ingersoll, J.E., Ross, S.A. (1985) A theory of the term structure of interest rates, Econometrica, 53, 385-408.
Stefano Maria Iacus
rsCIR
rcCIR(n=1, Dt=0.1, x0=1, theta=c(6,2,2))
Useful links