rsOU function

Ornstein-Uhlenbeck or Vasicek process stationary law

Ornstein-Uhlenbeck or Vasicek process stationary law

Density, distribution function, quantile function, and random generation for the stationary law of the Ornstein-Uhlenbeck process also known as the Vasicek process.

dsOU(x, theta, log = FALSE) psOU(x, theta, lower.tail = TRUE, log.p = FALSE) qsOU(p, theta, lower.tail = TRUE, log.p = FALSE) rsOU(n=1, theta)

Arguments

  • x: vector of quantiles.
  • p: vector of probabilities.
  • theta: parameter of the Ornstein-Uhlenbeck process; see details.
  • n: number of random numbers to generate from the conditional distribution.
  • log, log.p: logical; if TRUE, probabilities pp are given as log(p)log(p).
  • lower.tail: logical; if TRUE (default), probabilities are P[X <= x]; otherwise P[X > x].

Details

This function returns quantities related to the stationary law of the process solution of

dXt=(θ1θ2Xt)dt+θ3dWt.dXt=(theta[1]theta[2]Xt)dt+theta[3]dWt. {\rm d}X_t = (\theta_1-\theta_2 X_t){\rm d}t + \theta_3 {\rm d}W_t.dX_t = (theta[1]-theta[2]*Xt)*dt + theta[3]*dWt.

Contraints: theta[2]>0,theta[3]>0theta[2]>0, theta[3]>0.

Please note that the process is stationary only if theta[2]>0theta[2]>0.

Returns

  • x: a numeric vector

References

Uhlenbeck, G. E., Ornstein, L. S. (1930) On the theory of Brownian motion, Phys. Rev., 36, 823-841.

Vasicek, O. (1977) An Equilibrium Characterization of the Term Structure, Journal of Financial Economics, 5, 177-188.

Author(s)

Stefano Maria Iacus

See Also

rcOU

Examples

rsOU(n=1, theta=c(0,2,1))
  • Maintainer: Stefano Maria Iacus
  • License: GPL (>= 2)
  • Last published: 2022-08-09

Useful links