Simplified Fetching and Processing of Microarray and RNA-Seq Data
Run FastQC
Check for presence of command-line interfaces
Run FastQ Screen
Fetch files
Fetch metadata for a genomic study
Get supported microarray platforms
Aggregrate metadata from salmon quantifications
Get mapping between transcripts and genes
Install custom CDF packages
Install seeker's system dependencies
Run MultiQC
Run Salmon
Process RNA-seq data end to end
Process microarray data end to end
Run Trim Galore!
Run tximport on RNA-seq quantifications
Wrapper around various existing tools and command-line interfaces, providing a standard interface, simple parallelization, and detailed logging. For microarray data, maps probe sets to standard gene IDs, building on 'GEOquery' Davis and Meltzer (2007) <doi:10.1093/bioinformatics/btm254>, 'ArrayExpress' Kauffmann et al. (2009) <doi:10.1093/bioinformatics/btp354>, Robust multi-array average 'RMA' Irizarry et al. (2003) <doi:10.1093/biostatistics/4.2.249>, and 'BrainArray' Dai et al. (2005) <doi:10.1093/nar/gni179>. For RNA-seq data, fetches metadata and raw reads from National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA), performs standard adapter and quality trimming using 'TrimGalore' Krueger <https://github.com/FelixKrueger/TrimGalore>, performs quality control checks using 'FastQC' Andrews <https://github.com/s-andrews/FastQC>, quantifies transcript abundances using 'salmon' Patro et al. (2017) <doi:10.1038/nmeth.4197> and potentially 'refgenie' Stolarczyk et al. (2020) <doi:10.1093/gigascience/giz149>, aggregates the results using 'MultiQC' Ewels et al. (2016) <doi:10.1093/bioinformatics/btw354>, maps transcripts to genes using 'biomaRt' Durinkck et al. (2009) <doi:10.1038/nprot.2009.97>, and summarizes transcript-level quantifications for gene-level analyses using 'tximport' Soneson et al. (2015) <doi:10.12688/f1000research.7563.2>.