segclust2d0.3.3 package

Bivariate Segmentation/Clustering Methods and Tools

add_covariates

Covariate Calculations

angular_speed

Calculate angular speed along a path

apply_rowSums

apply_rowSums

apply_subsampling

Internal function for subsampling

argcheck_diag.var

Check for argument 'diag.var'

argcheck_Kmax

Check for argument 'Kmax'

argcheck_lmin

Check for argument 'lmin'

argcheck_ncluster

Check for argument 'ncluster'

argcheck_order.var

Check for argument 'order.var'

argcheck_ordering

Check for argument 'order'

argcheck_scale.variable

Check for argument 'scale.variable'

argcheck_seg.var

Check for argument 'seg.var'

argcheck_segclust

Check for argument 'ncluster' and 'nseg'

argcheck_segmentation

Check for argument 'nseg'

argcheck_type_coord

Check for deprecated 'type' and 'coord.names' argument

arma_repmat

arma_repmat

augment

Generic function for augment

bisig_plot

bisig_plot draws the plots of the bivariate signal on the same plot (s...

calc_BIC

Calculate BIC

calc_dist

Calculate distance between locations

calc_speed

Calculate speed along a path

calc_stat_states

Calculate state statistics

check_repetition

Check for repetition in the series

choose_kmax

Finding best segmentation with a different threshold S

chooseseg_lavielle

Internal Function for choosing optimal number of segment

colsums_sapply

colsums_sapply

cumsum_cpp

cumsum_cpp

DynProg

DynProg computes the change points given a cost matrix matD and a maxi...

DynProg_algo_cpp

DynProg_algo_cpp

EM.algo_simultanee

EM.algo_simultanee calculates the MLE of phi for given change-point in...

EM.algo_simultanee_Cpp

EM.algo_simultanee calculates the MLE of phi for given change-point in...

EM.init_simultanee

EM.init_simultanee proposes an initial value for the EM algorithm base...

Estep_simultanee

Estep_simultanee computes posterior probabilities and incomplete-data ...

find_mu_sd

Find mean and standard deviation of segments

Gmean_simultanee

Gmean_simultanee calculates the cost matrix for a segmentation model w...

Gmixt_algo_cpp

Gmixt_algo_cpp

Gmixt_simultanee

Gmixt_simultanee calculates the cost matrix for a segmentation/cluster...

Gmixt_simultanee_fullcpp

Gmixt_simultanee_fullcpp

hybrid_simultanee

hybrid_simultanee performs a simultaneous seg - clustering for bivar...

initialisePhi

initialisePhi is the constructor for a set of parameters for a segclus...

likelihood

Generic function for likelihood

logdens_simultanee

logdens_simultanee_cpp

map_segm

plot_segm plot segmented movement data on a map.

matrixRupt

matrixRupt transforms a vector of change point into a data.frame with ...

Mstep_simultanee

Mstep_simultanee computes the MLE within the EM framework

Mstep_simultanee_cpp

Mstep_simultanee computes the MLE within the EM framework

neighborsbis

neighbors tests whether neighbors of point k,P can be used to re-initi...

plot_segm

Plot segmentation on time-serie

plot_states

Plot states statistics

prep_segm

Find segment and states for a Picard model

prep_segm_HMM

Internal function for HMM

prep_segm_shiftfit

Internal function for HMM

prepare_HMM

Prepare HMM output for proper comparison plots

prepare_shiftfit

Prepare shiftfit output for proper comparison plots

relabel_states

Relabel states of a segmentation/clustering output

repmat

repmat repeats a matrix

ruptAsMat

ruptAsMat is an internal function to transform a vector giving the cha...

segclust

Segmentation/Clustering of movement data - Generic function

segclust_internal

Internal segmentation/clustering function

segclust2d

segclust2d: tools for segmentation of animal GPS movement data

segmap_list

segmap_list create maps with a list of object of segmentationclass

segmentation-class

segmentation class description

segmentation

Segmentation of movement data - Generic function

spatial_angle

Calculate spatial angle along a path

stat_segm

Calculate statistics on a given segmentation

stat_segm_HMM

Get segment statistic for HMM model

stat_segm_shiftfit

Get segment statistic for shiftfit model

subsample_rename

Internal function for subsampling

test_data

Test function generating fake data

wrap_dynprog_cpp

DynProg Rcpp DynProg computes the change points given a cost matrix ma...

Provides two methods for segmentation and joint segmentation/clustering of bivariate time-series. Originally intended for ecological segmentation (home-range and behavioural modes) but easily applied on other series, the package also provides tools for analysing outputs from R packages 'moveHMM' and 'marcher'. The segmentation method is a bivariate extension of Lavielle's method available in 'adehabitatLT' (Lavielle, 1999 <doi:10.1016/S0304-4149(99)00023-X> and 2005 <doi:10.1016/j.sigpro.2005.01.012>). This method rely on dynamic programming for efficient segmentation. The segmentation/clustering method alternates steps of dynamic programming with an Expectation-Maximization algorithm. This is an extension of Picard et al (2007) <doi:10.1111/j.1541-0420.2006.00729.x> method (formerly available in 'cghseg' package) to the bivariate case. The method is fully described in Patin et al (2018) <doi:10.1101/444794>.

  • Maintainer: Remi Patin
  • License: GPL-3
  • Last published: 2024-04-24