Function to plot model fit indices for spatial SEM analyses
Function to plot model fit indices for spatial SEM analyses
A function to plot model fit indices across lag distances. The default is to plot all of the chi square, cfi, rmsea (including confidence intervals), and srmr indices. Horizontal lines indicating significant cutoffs for each index are plotted (chi square p=0.05, cfi=0.9, rmsea=0.05, and srmr=0.08). Options to add trend lines are available.
spatial_model_results: a list object produced by function runModels
plots: Indicates which indices should be plotted. The default "all" produces plots of all of the chi square, cfi, rmsea (including confidence intervals), and srmr indices. plot="chi", "cfi", "rmsea", or "srmr" will produce only a single plot.
add.line: Indicates whether a trendline should be added connecting the points. The default "none" indicates no line, "step" plots straight line segments between points, and "smooth" plots a smoothed curve fit using function lowess. Smoothed lines do not include the flat model (lag distance zero).
rmsea_err: Should the rmsea index be plotted with confidence intervals? rmsea_err=T is the default, rmsea_err=F will suppress confidence intervals. Note that warnings will likely arise if rmsea_err=T is used and there are confidence intervals of zero. All these warnings indicate is that that particular confidence interval is equal to the estimated value and will not be plotted.
pch: plotting symbol
lwd: line width
lty: line format
cex: symbol size
cex.lab: label font size
cex.axis: axis label font size
cex.main: plot title font size
References
Lamb, E. G., K. Mengersen, K. J. Stewart, U. Attanayake, and S. D. Siciliano. 2014. Spatially explicit structural equation modeling. Ecology 95 :2434-2442.
Author(s)
Eric Lamb
Note
Warnings may arise from the plotting of the rsmea error bars if rmsea_err=T is used and there are confidence intervals of zero. All these warnings indicate is that that particular confidence interval is equal to the estimated value and will not be plotted.
See Also
sem, make.covar, runModels, modelsummary, avg.modindices, plotpath, gam.path
Examples
#data=truelove#distancematrix<-calc.dist(truelove)#Truelove_bins<-make.bin(distancematrix,type="ALL",p.dist=20)#binsize<-Truelove_bins[1][[1]] #truelove lowland bin sizes#binname<-Truelove_bins[2][[1]] #truelove lowland bin names#covariances<-make.covar(truelove,distancematrix,binsize,binname)#covariances# path model for the truelove dataset#spatial_model<-'# Gram ~ Moisture# N_Fix ~ Bryoph + Lich + SoilCrust# SoilCrust ~ Bryoph + Lich + Gram + Shrubs + Forbs # Bryoph ~ Gram + Shrubs + Forbs + Moisture# Lich ~ Moisture + Forbs + Gram + Shrubs + Bryoph# Forbs ~ Moisture# Gram ~~ Forbs# Shrubs ~ Moisture # Gram ~~ Shrubs# Shrubs ~~ Forbs# '##results<-runModels(spatial_model,covariances)#The above script produces the sesem object stored as truelove_resultsdata=truelove_results
plotmodelfit(truelove_results)#note that the warnings that arise here can be ignoredplotmodelfit(truelove_results,rmsea_err=FALSE)plotmodelfit(truelove_results,plots="chi")