Build the basis matrix and the penalty matrix of cubic B-spline basis.
deBoor
builds the basis matrix and penalty matrix to approximate a smooth function using cubic B-spline cubic.
deBoor2(t, knots)
t
: a vector of values.knots
: a set of internal knot.nknot number of knots.
knots set of knots.
N basis matrix.
K penalty matrix.
set.seed(1) t_1 <- runif(120) range(t_1) t_2 <- t_1 + 2 #runif(120,2,3) range(t_2) knot <- 10 dB1 <- deBoor2(t_1,knot) dB2 <- deBoor2(t_2,knot) dB1$knots dB2$knots plot(0,0,xlim=c(-0.5,3.5)) points(dB1$knots,rep(0,length(dB1$knots)),pch=20) delta <- dB2$knots[1] - dB1$knots[1] points(dB2$knots-delta,rep(0,length(dB2$knots)),pch=2,col= 'blue') dB1$K dB2$K zeros <- vector() plot(t_1,dB1$N[,1],pch=20) for(j in 1:knot){ points(t_1,dB1$N[,j],pch=20,col=j) zeros[j] <- sum(dB1$N[,j]==0) } zeros/120 cond_tNN <- vector() KnotS <- 3:50 for(j in KnotS){ dB1 <- deBoor2(t_1,j) print(dB1$knots[2]- dB1$knots[1]) min_max <- range(eigen(t(dB1$N)%*%dB1$N)$values) cond_tNN[j-2] <- min_max[1]/min_max[2] } cond_tNN plot(KnotS,cond_tNN,pch=20,ylim=c(0,0.07))
Carlos Alberto Cardozo Delgado, Semi-parametric generalized log-gamma regression models. Ph. D. thesis. Sao Paulo University.
Carlos Alberto Cardozo Delgado cardozorpackages@gmail.com
Useful links