gnfit function

gnfit

gnfit

This function provides some useful statistics to assess the quality of fit of generalized log-gamma probabilistic model, including the statistics Cramer-von Mises and Anderson-Darling. It can also calculate other goodness of fit such as Hannan-Quin Information Criterion and Kolmogorov-Smirnov test.

gnfit(starts, data)

Arguments

  • starts: numeric vector. Initial parameters to maximize the likelihood function
  • data: numeric vector. A sample of a generalized log-gamma distribution.

Examples

## Not run: set.seed(1) # The size of the sample must be median or large to obtain a good estimates n <- 100 sample <- rglg(n,location=0,scale=0.5,shape=0.75) # This step takes a few minutes. result <- gnfit(starts=c(0.1,0.75,1),data=sample) result ## End(Not run)

References

Carlos Alberto Cardozo Delgado, Semi-parametric generalized log-gamma regression models. Ph. D. thesis. Sao Paulo University.

Author(s)

Carlos Alberto Cardozo Delgado cardozorpackages@gmail.com

  • Maintainer: Carlos Alberto Cardozo Delgado
  • License: GPL-3
  • Last published: 2022-09-04

Useful links