This function provides some useful statistics to assess the quality of fit of generalized log-gamma probabilistic model, including the statistics Cramer-von Mises and Anderson-Darling. It can also calculate other goodness of fit such as Hannan-Quin Information Criterion and Kolmogorov-Smirnov test.
gnfit(starts, data)
Arguments
starts: numeric vector. Initial parameters to maximize the likelihood function
data: numeric vector. A sample of a generalized log-gamma distribution.
Examples
## Not run:set.seed(1)# The size of the sample must be median or large to obtain a good estimatesn <-100sample <- rglg(n,location=0,scale=0.5,shape=0.75)# This step takes a few minutes.result <- gnfit(starts=c(0.1,0.75,1),data=sample)result
## End(Not run)
References
Carlos Alberto Cardozo Delgado, Semi-parametric generalized log-gamma regression models. Ph. D. thesis. Sao Paulo University.