quantile_residuals function

Quantile Residuals for a Generalized Log-gamma Regression Model

Quantile Residuals for a Generalized Log-gamma Regression Model

quantile_residuals is used to generate quantile residuals for a generalized log-gamma regression model.

quantile_residuals(fit)

Arguments

  • fit: is an object sglg. This object is returned from the call to glg(), sglg(), survglg() or ssurvglg().

Examples

# Example 1 n <- 400 set.seed(4) error <- rglg(n,0,0.5,1) y <- as.data.frame(0.5 + error) names(y) <- "y" fit_0 <- glg(y~1,data=y) fit_0$mu fit_0$sigma fit_0$lambda quantile_residuals(fit_0) # Example 2 n <- 500 set.seed(6) error <- rglg(n,0,0.5,1) x1 <- runif(n,-2,2) beta <- c(0.5,2) y <- cbind(1,x1)%*%beta + error data <- data.frame(y=y,x1=x1) fit_1 <- glg(y~x1,data=data) fit_1$mu fit_1$sigma fit_1$lambda quantile_residuals(fit_1)

References

Carlos Alberto Cardozo Delgado, Semi-parametric generalized log-gamma regression models. Ph. D. thesis. Sao Paulo University.

Author(s)

Carlos Alberto Cardozo Delgado cardozorpackages@gmail.com

  • Maintainer: Carlos Alberto Cardozo Delgado
  • License: GPL-3
  • Last published: 2022-09-04

Useful links