Backfit from PNSS or PCA scores to a representative configuration
backfit(scores, x, type="pnss", size=1)
Arguments
scores: n x p matrix of scores
x: An object that is the output of either pnss3d (if type="pnss") or procGPA (if type="pca")
type: Either "pnss" for PNSS or "pca" for PCA
size: The centroid size of the backfitted configuration. The default is 1 but one can rescale the backfitting if desired.
Returns
A k x m matrix of co-ordinates of the backfitted configuration
References
Dryden, I.L., Kim, K., Laughton, C.A. and Le, H. (2019). Principal nested shape space analysis of molecular dynamics data. Annals of Applied Statistics, 13, 2213-2234.
Jung, S., Dryden, I.L. and Marron, J.S. (2012). Analysis of principal nested spheres. Biometrika, 99, 551-568.
Author(s)
Ian Dryden
See Also
pns, pns4pc, plot3darcs
Examples
ans <- pnss3d( macf.dat, sphere.type="BIC", n.pc=8)y <- backfit( ans$PNS$scores[1,], ans ,type="pnss")riemdist( macf.dat[,,1], y )#should be close to zeroans2 <- procGPA( macf.dat, tangentcoords="partial")y <- backfit( ans2$scores[1,], ans2 ,type="pca")riemdist( macf.dat[,,1], y )#should be close to zero