gauss_cat_parameters function

A torch::nn_module() Representing a gauss_cat_parameters

A torch::nn_module() Representing a gauss_cat_parameters

The gauss_cat_parameters module extracts the parameters from the inferred generative Gaussian and categorical distributions for the continuous and categorical features, respectively.

If one_hot_max_sizes is [4,1,1,2][4, 1, 1, 2], then the inferred distribution parameters for one observation is the vector [p00,p01,p02,p03,μ1,σ1,μ2,σ2,p30,p31][p_{00}, p_{01}, p_{02}, p_{03}, \mu_1, \sigma_1, \mu_2, \sigma_2, p_{30}, p_{31}], where Softmax([p00,p01,p02,p03])\operatorname{Softmax}([p_{00}, p_{01}, p_{02}, p_{03}]) and Softmax([p30,p31])\operatorname{Softmax}([p_{30}, p_{31}])

are probabilities of the first and the fourth feature categories respectively in the model generative distribution, and Gaussian(μ1,σ12\mu_1, \sigma_1^2) and Gaussian(μ2,σ22\mu_2, \sigma_2^2) are the model generative distributions on the second and the third features.

gauss_cat_parameters(one_hot_max_sizes, min_sigma = 1e-04, min_prob = 1e-04)

Arguments

  • one_hot_max_sizes: A torch tensor of dimension n_features containing the one hot sizes of the n_features

    features. That is, if the ith feature is a categorical feature with 5 levels, then one_hot_max_sizes[i] = 5. While the size for continuous features can either be 0 or 1.

  • min_sigma: For stability it might be desirable that the minimal sigma is not too close to zero.

  • min_prob: For stability it might be desirable that the minimal probability is not too close to zero.

Author(s)

Lars Henry Berge Olsen