coords: If NULL (default), coordinates will be calculated with Hcoords(hcl)
horiz: Plot values for a horizontal tree?
method: If "text" (default), plot text values, if "points", plot points
threshold: If set, do not plot text or points for values < threshold; respects percents if set
top: If set as 'n', plot values only for 'n' highest clusters
percent: Plot values as percents?
...: If "text" (default), additional arguments to text(), if "points", to points()
Details
This low-level plot function plots text or points in accordance with bootstrap values to the corresponding node of the plotted 'hclust' object.
Returns
List with components: 'coords' for coordinates, 'labels' for (selected) values.
See Also
Bclust
Examples
## 'atmospheres' data(bb <- Bclust(t(atmospheres)))# specify 'mc.cores=4' or similar to speed up the process## standard useplot(bb$hclust)Bclabels(bb$hclust, bb$values, col="blue", pos=3, offset=0.1, threshold=0.9)## 'points' methodplot(bb$hclust)Bclabels(bb$hclust, bb$values, method="points", threshold=0.9, pch=19, cex=2)## 'points' which grow with supportplot(bb$hclust)Bclabels(bb$hclust, bb$values, method="points", pch=19, cex=bb$values*3)## pre-defined coordinatescoords1 <- Hcoords(bb$hclust)plot(bb$hclust)Bclabels(bb$hclust, bb$values, coords=coords1, method="points", pch=19, cex=bb$values*3)## use with horizontal Ploth()oldpar <- par(mar=c(2,1,0,4))Ploth(bb$hclust, horiz=TRUE)Bclabels(bb$hclust, bb$values, col="blue", pos=3, offset=0.1, horiz=TRUE)par(oldpar)## 'moldino' datam.bb <- Bclust(t(moldino))# specify 'mc.cores=4' or similar to speed up the processplot(m.bb$hclust)Bclabels(m.bb$hclust, m.bb$values, col="red", pos=3, offset=0.1, threshold=0.5)## 'iris' data, with hyper-binding to make number of variables reliableiris.bb <- Bclust(iris[, rep(1:4,6)], iter=100)# remove iter=100 for better bootstrapplot(iris.bb$hclust, labels=FALSE, main="", xlab="", sub="Bootstrap, 100 replicates")## use 'percent' and 'top'Bclabels(iris.bb$hclust, iris.bb$values, top=5, percent=TRUE, pos=3, offset=0.1)Fence(iris.bb$hclust, iris$Species)legend("topright", legend=levels(iris$Species), col=1:3, lwd=2.5, bty="n")