BootA function

Bootstrap clustering

Bootstrap clustering

How to bootstrap clustering with 'ape'

BootA(dat, FUN=function(.x) ape::nj(dist(.x)), iter=1000, mc.cores=1, tresh=50, cons=TRUE, prop=0.5)

Arguments

  • dat: data
  • FUN: how to bootstrap (see examples)
  • iter: number of iterations, default 1000
  • mc.cores: how many cores to employ (system-dependent)
  • tresh: Threshold for printing bootstrap values
  • cons: Calculate consensus tree?
  • prop: 0.5 is majority-rule consensus (default), 1 is strict consensus

Details

This is how to bootstrap clustering with 'ape::boot.phylo()'.

Author(s)

Alexey Shipunov

See Also

Bclust, BootA, ape::boot.phylo

Examples

dat <- iris[, -5] row.names(dat) <- abbreviate(make.names(iris[, 5], unique=TRUE)) iris.BA1 <- BootA(dat, iter=100) plot(iris.BA1$boot.tree, show.node.label=TRUE) plot(iris.BA1$cons.tree) iris.BA2 <- BootA(dat, FUN=function(.x) ape::as.phylo(hclust(dist(.x))), iter=100) ## Not run: ## change (or remove) 'mc.cores=...' in accordance with your system features iris.BA3 <- BootA(dat, FUN=function(.x) phangorn::NJ(dist(.x)), iter=100, mc.cores=4) ## End(Not run)
  • Maintainer: ORPHANED
  • License: GPL (>= 2)
  • Last published: 2023-02-05

Useful links