Bootstrap with kNN
How to bootstrap with kNN (and DNN)
BootKNN(data, classes, sub="none", nsam=4, nboot=1000, misclass=TRUE, method="knn", ...)
data
: Data frame to classifyclasses
: Character vector of class namessub
: Subsample to use (see example)nsam
: Number of training items from each level of grouping factor, default 4nboot
: Number of iterationsmisclass
: Calculate misclassification table?method
: Either "knn" (class::knn()) or "dnn" (shipunov::Dnn())...
: Further arguments to method functionsThis function samples equal numbers ('nsam') of training items from each level of grouping factor.
It also allows to use subset of data which will be used for sub-sampling of training data.
Returns all predictions as character matrix, each boot is a column
Alexey Shipunov
class::knn
, Dnn
iris.sub <- 1:nrow(iris) %in% seq(1, nrow(iris), 5) iris.bootknn <- BootKNN(iris[, -5], iris[, 5], sub=iris.sub) ## calculate and plot stability st <- apply(iris.bootknn, 1, function(.x) var(as.numeric(as.factor(.x)))) plot(prcomp(iris[, -5])$x, col=iris$Species, pch=ifelse(st == 0, 19, 1)) ## boot Dnn BootKNN(iris[, -5], iris[, 5], nboot=50, method="dnn", k=1, FUN=function(.x) Gower.dist(.x))
Useful links