Ellipses function

Confidence ellipses

Confidence ellipses

Calculates and plots group confidence ellipses

Ellipses(pts, groups, match.color=TRUE, usecolors=NULL, centers=FALSE, c.pch=0, c.cex=3, level=0.95, df=1000, prec=51, coords=NULL, plot=TRUE, ...)

Arguments

  • pts: Data points to plot
  • groups: Grouping variable
  • match.color: Match colors
  • usecolors: Use colors (palette)
  • centers: Show centers?
  • c.pch: Color of center points
  • c.cex: Scale of center points
  • level: Confidence level for F-distribution
  • df: Used in calculation of P-content according to F(2, df) distribution
  • prec: Precision of ellipse plotting (default is 51 points)
  • coords: Pre-calculated ellipses coordinates: list of two-column matrices named as groups (by default, not required)
  • plot: Plot?
  • ...: Arguments to lines()

Details

Note that (at least at the moment), ellipses are plotted with line(), therefore shading is not straightforward (but possible, see examples).

Also, with a help from Pinhull() (see its help), it is possible to reveal "outliers", points outside of each ellipse borders.

See also package 'cluster' for ellipsoidhulls() function that allows to draw ellipse-like hulls.

Returns

Invisibly returns the list in the form similar to Hulls(), to use as a list of polygons or with Overlap().

Author(s)

Alexey Shipunov

See Also

Hulls, Overlap, Pinhull

Examples

iris.p <- prcomp(iris[, -5])$x[, 1:2] plot(iris.p, type="n", xlab="PC1", ylab="PC2") text(iris.p, labels=abbreviate(iris[, 5], 1, method="both.sides")) iris.e <- Ellipses(iris.p[, 1:2], iris[, 5], centers=TRUE) ## calculate overlap between ellipses Overlap(iris.e) ## how to plot filled ellipses plot(iris.p, type="n", xlab="PC1", ylab="PC2") text(iris.p, labels=abbreviate(iris[, 5], 1, method="both.sides")) for (i in seq_along(iris.e)) polygon(iris.e[[i]], border=NA, col=adjustcolor(i, alpha.f=0.2)) ## how to reveal (and label) "outliers", points outside of _all_ ellipses iris.pie <- Pinhull(iris.p, iris.e) outs <- which(apply(iris.pie, 1, sum) == 0) points(iris.p[outs, ], cex=2, pch=4) ## embedded convex hulls plot(iris.p, col=iris$Species) for (i in seq_along(iris.e)) lines(iris.e[[i]], col=i, lty=2) mi <- cbind(seq_len(nrow(iris)), as.numeric(iris$Species)) # indexing matrix ## remove "outliers" in broad sense, points which are outside of its "own" ellipse: emb <- rowSums(iris.pie) == 1 & iris.pie[mi] Hulls(iris.p[emb, ], iris$Species[emb]) ## LDA ellipes library(MASS) ch.lda <- lda(Species ~ ., data=chaetocnema[, -2]) ch.lda.pred <- predict(ch.lda, chaetocnema[, -(1:2)]) ## ellipses here are by default bigger then plot so use workaround: ee <- Ellipses(ch.lda.pred$x, chaetocnema$Species, plot=FALSE) xx <- range(c(do.call(rbind, ee)[, 1], ch.lda.pred$x[, 1])) yy <- range(c(do.call(rbind, ee)[, 2], ch.lda.pred$x[, 2])) plot(ch.lda.pred$x, col=chaetocnema$Species, xlim=xx, ylim=yy) Ellipses(ch.lda.pred$x, chaetocnema$Species, coords=ee) ## search for the maximal level which gives zero overlap plot(x5 ~ x17, data=haltica, pch=as.numeric(haltica$Species)) for (i in (99:59)/100) { cat(i, "\n") ee <- Ellipses(haltica[, c("x17", "x5")], haltica$Species, level=i, plot=FALSE) print(mean(Overlap(ee), na.rm=TRUE)) cat("\n") } Ellipses(haltica[, c("x17", "x5")], haltica$Species, level=.62)
  • Maintainer: ORPHANED
  • License: GPL (>= 2)
  • Last published: 2023-02-05

Useful links