Jclust(data, n.cl, iter=1000, method.d="euclidean", method.c="ward.D", bootstrap=TRUE, monitor=TRUE)## S3 method for class 'Jclust'print(x,...)## S3 method for class 'Jclust'plot(x, main="", xlab=NULL, rect.lty=3, rect.col=1, rect.xpd=TRUE, top=FALSE, lab.pos=3, lab.offset=0.5, lab.col=par("col"), lab.font=par("font"),...)
Arguments
data: Data
n.cl: Number of desired clusters
iter: Number of iterations, default 1000
method.d: Distance method
method.c: Hierarchical clustering method
bootstrap: Bootstrap or jackknife?
monitor: If TRUE (default), prints a dot for each replicate
x: Object of the class 'Jclust'
main: Plot title
xlab: Horizontal axis label
rect.lty: Line type for the rectangles
rect.col: Color of rectangles
rect.xpd: Plot rectangle sides if they go outside the plotting region?
top: Plot values on top?
lab.pos: Position specifier for the values text labels
lab.offset: Distance of the text labels in fractions of a character width
lab.col: Color of the text labels
lab.font: Font of the text labels
...: Additional arguments to the print() or plot.hclust()
Details
Simple method to bootstrap and jackknife cluster memberships, and plot consensus membership tree. Requires the desired number of clusters.
The default clustering method is the variance-minimizing "ward.D" (which works better with Euclidean distances); to make it coherent with hclust() default, specify 'method.c="complete"'.
Note that Jclust() is fast indirect bootstrap, it boostrap the consensus (not the original) tree and narrows results with the desired number of clusters. Please consider also Bclust() which is the direct method, and phylogeny-based BootA().
Returns
Returns 'Jclust' object which is a list with components "meth" (bootstrap or jacknife), "mat" (matrix of results, consensus matrix), "hclust" (consensus tree as 'hclust' object), "gr" (groups), "supp" (support values), "iter" (number of iterations) and "n.cl" (number of cluters used.)
Author(s)
Alexey Shipunov
See Also
Bclust,
BootA,
Fence
Examples
## 'moldino' data, 1000 iterations(mo.j <- Jclust(t(moldino), n.cl=3, iter=1000))plot(mo.j)## adjust locations of value labelsdata.jb <- Jclust(t(atmospheres), method.c="complete", n.cl=3)plot(data.jb, top=TRUE, lab.pos=1, lab.offset=1, lab.col=2, lab.font=2)## plot together with Fence()iris.jb <- Jclust(iris[,-5], n.cl=3)plot(iris.jb, labels=FALSE)Fence(iris.jb$hclust, iris$Species)legend("topright", legend=levels(iris$Species), col=1:3, lwd=2.5, bty="n")## This is how one can bootstrap _all_ reliable cluster numbers:for(i in2:(nrow(t(moldino))-1)) print(Jclust(t(moldino), i, iter=1000, boot=TRUE))