plot_cov(sobj, type ="relpos", ordering =TRUE, facetting =TRUE)
Arguments
sobj: A simrel object
type: Type of covariance matrix - can take two values relpos for relevant position of principal components and relpred for relevant position of predictor variables
ordering: TRUE for ordering the covariance for block diagonal display
facetting: TRUE for facetting the predictor and response space. FALSE will give a single facet plot
Returns
A covariance plot
Examples
sobj <- simrel(n =100, p =10, q = c(4,5), relpos = list(c(1,2,3), c(4,6,7)), m =3, R2 = c(0.8,0.7), ypos = list(c(1,3),2), gamma =0.7, type ="multivariate")p1 <- plot_cov(sobj, type ="relpos", facetting =FALSE)p2 <- plot_cov(sobj, type ="rotation", facetting =FALSE)p3 <- plot_cov(sobj, type ="relpred", facetting =FALSE)gridExtra::grid.arrange(p1, p2, p3, ncol =3)
References
Sæbø, S., Almøy, T., & Helland, I. S. (2015). simrel—A versatile tool for linear model data simulation based on the concept of a relevant subspace and relevant predictors. Chemometrics and Intelligent Laboratory Systems, 146, 128-135.
Almøy, T. (1996). A simulation study on comparison of prediction methods when only a few components are relevant. Computational statistics & data analysis, 21(1), 87-107.
Rimal, R., Almøy, T., & Sæbø, S. (2018). A tool for simulating multi-response linear model data. Chemometrics and Intelligent Laboratory Systems, 176, 1-10.