plot_covariance function

Plot Covariance between predictor (components) and response (components)

Plot Covariance between predictor (components) and response (components)

plot_covariance( sigma_df, lambda_df = NULL, base_theme = theme_grey, lab_list = NULL, theme_list = NULL )

Arguments

  • sigma_df: A data.frame generated by tidy_sigma
  • lambda_df: A data.frame generated by tidy_lambda
  • base_theme: Base ggplot theme to apply
  • lab_list: List of labs arguments such as x, y, title, subtitle
  • theme_list: List of theme arguments to apply in the plot

Returns

A plot of true regression coefficients for the simulated data

Examples

sobj <- bisimrel(p = 12) sigma_df <- sobj %>% cov_mat(which = "zy") %>% tidy_sigma() %>% abs_sigma() lambda_df <- sobj %>% tidy_lambda() plot_covariance( sigma_df, lambda_df, base_theme = ggplot2::theme_bw, lab_list = list( title = "Covariance between Response and Predictor Components", subtitle = "The bar represents the eigenvalues predictor covariance", y = "Absolute covariance", x = "Predictor Component", color = "Response Component" ), theme_list = list( legend.position = "bottom" ) )
  • Maintainer: Raju Rimal
  • License: GPL-3
  • Last published: 2021-09-17