controlPopVar function

Control parameters for population size estimation

Control parameters for population size estimation

Creating control parameters for population size estimation and respective standard error and variance estimation.

controlPopVar( alpha = 0.05, bootType = c("parametric", "semiparametric", "nonparametric"), B = 500, confType = c("percentilic", "normal", "basic"), keepbootStat = TRUE, traceBootstrapSize = FALSE, bootstrapVisualTrace = FALSE, fittingMethod = c("optim", "IRLS"), bootstrapFitcontrol = NULL, sd = c("sqrtVar", "normalMVUE"), covType = c("observedInform", "Fisher"), cores = 1L )

Arguments

  • alpha: a significance level, 0.05 used by default.

  • bootType: the bootstrap type to be used. Default is "parametric", other possible values are: "semiparametric" and "nonparametric".

  • B: a number of bootstrap samples to be performed (default 500).

  • confType: a type of confidence interval for bootstrap confidence interval, "percentile" by default. Other possibilities: "studentized" and "basic".

  • keepbootStat: a boolean value indicating whether to keep a vector of statistics produced by bootstrap.

  • traceBootstrapSize: a boolean value indicating whether to print size of bootstrapped sample after truncation for semi- and fully parametric bootstraps.

  • bootstrapVisualTrace: a boolean value indicating whether to plot bootstrap statistics in real time if cores = 1 if cores > 1 it instead indicates whether to make progress bar.

  • fittingMethod: a method used for fitting models from bootstrap samples.

  • bootstrapFitcontrol: control parameters for each regression works exactly like controlMethod but for fitting models from bootstrap samples.

  • sd: a character indicating how to compute standard deviation of population size estimator either as: \mjsdeqn \hat \sigma=\sqrt \hat \text var(\hat N)

    for sqrt (which is slightly biased if \mjseqn \hat N

    has a normal distribution) or for normalMVUE as the unbiased minimal variance estimator for normal distribution: \mjsdeqn \hat \sigma=\sqrt \hat \text var(\hat N)

    \frac \Gamma \left (\frac N_obs-12\right )\Gamma \left (\frac N_obs2\right )

    \sqrt \frac N_obs2

    where the ration involving gamma functions is computed by log gamma function.

  • covType: a type of covariance matrix for regression parameters by default observed information matrix.

  • cores: for bootstrap only, a number of processor cores to be used, any number greater than 1 activates code designed with doParallel, foreach and parallel packages. Note that for now using parallel computing makes tracing impossible so traceBootstrapSize and bootstrapVisualTrace parameters are ignored in this case.

Returns

A list with selected parameters, it is also possible to call list directly.

See Also

estimatePopsize() controlModel() controlMethod()

Author(s)

Piotr Chlebicki, Maciej Beręsewicz \loadmathjax

  • Maintainer: Maciej Beręsewicz
  • License: MIT + file LICENSE
  • Last published: 2025-02-13