An S3 method for stats::simulate to handle singleRStaticCountData and singleRfamily classes.
## S3 method for class 'singleRStaticCountData'simulate(object, nsim =1, seed =NULL,...)## S3 method for class 'singleRfamily'simulate(object, nsim, seed =NULL, eta, truncated =FALSE,...)
Arguments
object: an object representing a fitted model.
nsim: a numeric scalar specifying:
number of response vectors to simulate in simulate.singleRStaticCountData, defaults to 1L.
number of units to draw in simulate.singleRfamily, defaults to NROW(eta).
seed: an object specifying if and how the random number generator should be initialized (‘seeded’).
...: additional optional arguments.
eta: a matrix of linear predictors
truncated: logical value indicating whether to sample from truncated or full distribution.
Returns
a data.frame with n rows and nsim columns.
Examples
N <-10000###gender <- rbinom(N, 1, 0.2)gender <- rep(0:1, c(8042,1958))eta <--1+0.5*gender
counts <- simulate(ztpoisson(), eta = cbind(eta), seed =1)df <- data.frame(gender, eta, counts)df2 <- subset(df, counts >0)### check coverage with summarymod1 <- estimatePopsize( formula = counts ~1+ gender, data = df2, model = ztpoisson, controlMethod = list(silent =TRUE))mod1_sims <- simulate(mod1, nsim=10, seed =1)colMeans(mod1_sims)mean(df2$counts)