Plot uncertainty cubes
plots a uncertainty cube
## S3 method for class 'uncertainty_cube' plot( x, ..., tile = x[["tile"]][[1]], roi = NULL, palette = "RdYlGn", rev = TRUE, scale = 1, first_quantile = 0.02, last_quantile = 0.98, max_cog_size = 1024, legend_position = "inside" )
x
: Object of class "probs_image"....
: Further specifications for plot .tile
: Tiles to be plotted.roi
: Spatial extent to plot in WGS 84 - named vector with either (lon_min, lon_max, lat_min, lat_max) or (xmin, xmax, ymin, ymax)palette
: An RColorBrewer paletterev
: Reverse the color order in the palette?scale
: Scale to plot map (0.4 to 1.0)first_quantile
: First quantile for stretching imageslast_quantile
: Last quantile for stretching imagesmax_cog_size
: Maximum size of COG overviews (lines or columns)legend_position
: Where to place the legend (default = "inside")A plot object produced showing the uncertainty associated to each classified pixel.
The following optional parameters are available to allow for detailed control over the plot output:
graticules_labels_size
: size of coordinates labels (default = 0.7)legend_title_size
: relative size of legend title (default = 1.0)legend_text_size
: relative size of legend text (default = 1.0)legend_bg_color
: color of legend background (default = "white")legend_bg_alpha
: legend opacity (default = 0.5)if (sits_run_examples()) { # create a random forest model rfor_model <- sits_train(samples_modis_ndvi, sits_rfor()) # create a data cube from local files data_dir <- system.file("extdata/raster/mod13q1", package = "sits") cube <- sits_cube( source = "BDC", collection = "MOD13Q1-6.1", data_dir = data_dir ) # classify a data cube probs_cube <- sits_classify( data = cube, ml_model = rfor_model, output_dir = tempdir() ) # calculate uncertainty uncert_cube <- sits_uncertainty(probs_cube, output_dir = tempdir()) # plot the resulting uncertainty cube plot(uncert_cube) }
Gilberto Camara, gilberto.camara@inpe.br
Useful links